Toeplitz operators between Bergman-Orlicz spaces

被引:0
|
作者
Dong, Min [1 ]
Duan, Yongjiang [1 ]
Wang, Siyu [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz operator; Bergman-Orlicz spaces; Carleson measures; Berezin transform; HARDY-ORLICZ;
D O I
10.1007/s43034-023-00283-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a positive Borel measure mu on the unit disk D, let K-z(a) (w) = 1/(1-(z) over barw)(2+alpha) be the reproducing kernel of A(alpha)(2)(D) at z. The Toeplitz operators with symbol mu are densely defined as follows: T-mu(f)(z) = integral(D) f(w)<(Kaz(w))over bar>d mu(w), f epsilon H-infinity (D). Using the tools such as Carleson measures, Berezin transform and the average functions, we characterize the boundedness and compactness of Toeplitz operators T-mu acting between two different Bergman-Orlicz spaces A(alpha)(Phi 1) (D) and A(alpha)(Phi 2) (D) for two convex growth functions Phi(1) and Phi(2).
引用
收藏
页数:24
相关论文
共 50 条