In this paper, we provide descriptions of the boundedness and compactness for the Toeplitz operators Tμ,β between distinct weighted Bergman spaces Lap(ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_a^p\left(\omega \right)$$\end{document} and Laq(ω)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_a^q\left(\omega \right)$$\end{document} for 0 < p ⩽ 1, q = 1, −1 < α, β < ∞ and 0 < p ⩽ 1 < q < ∞, −1 < β ⩽ α < ∞, respectively. Part of our results are new even in the unweighted Bergman spaces.
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Hu, Xiaohe
Wang, Cui
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Wang, Cui
Xu, Zhiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Sch Math, Tianjin 300350, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
机构:
Missouri Southern State Univ, Dept Math, 3950 E Newman Rd, Joplin, MO 64801 USAMissouri Southern State Univ, Dept Math, 3950 E Newman Rd, Joplin, MO 64801 USA