Investigations on OFDM UAV-based free-space optical transmission system with scintillation mitigation for optical wireless communication-to-ground links in atmospheric turbulence

被引:0
|
作者
Ebrahim E. Elsayed
机构
[1] Faculty of Engineering,Department of Electronics and Communications Engineering (ECE)
[2] Mansoura University,undefined
[3] Mansoura,undefined
[4] Republic Street - The University Campus,undefined
关键词
OWC OFDM-based UAV-FSO; Channel conditions; Q Factor; BER; Constellation plots; Atmospheric turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
The potential integration of unmanned aerial vehicles (UAVs) with free space optical (FSO) communication systems stands as a promising innovation in the realm of wireless network infrastructures. This study presents a comprehensive investigation into the application of orthogonal frequency division multiplexing (OFDM) in conjunction with UAV-based FSO technology, with a specific focus on establishing robust wireless communication links to ground sites within the evolving landscape of 5G networks. The research introduces a pioneering 4-level quadrature amplitude modulation (4-QAM)-OFDM-FSO framework tailored for UAV-to-ground communication, revolutionizing the prospects for seamless and high-throughput data transmission within dynamic network environments. Through comprehensive simulations and theoretical analyses, we unveil the system's efficacy in mitigating atmospheric turbulence, achieving heightened signal integrity, and ensuring performance adaptability over varying link distances, thus significantly addressing present limitations in traditional wireless communication models. Anchored within the context of modern wireless network infrastructures, this work serves as a crucial stepping stone for the practical application of OFDM-UAV-FSO communication systems, representing a paradigm shift in fostering resilient and agile wireless connectivity in the era of 5G networks. The inception of cutting-edge wireless networks expected to outperform the capabilities of 5G necessitates an infrastructure that can handle vast amounts of data. This infrastructure must be not only cost-effective and simple to deploy but also readily scalable to accommodate the diverse demands of front-haul and backhaul applications. Motivated by the growing interest in harnessing UAVs to extend the reach and enhance the operational efficacy of conventional cellular networks, this work introduces a novel application of UAV-ground station connections. The concept employs FSO to facilitate network traffic within both the segments. To optimize throughput, resilience, and spectral efficiency, the application of OFDM is proposed. The research considers the transmission of a 20 Gbps 4-QAM data signal across various channel conditions. It thoroughly assesses the performance implications of factors such as transmission distance and beam divergence. The study explores the correlation between pointing error, scintillation, beam divergence angle, and average spectral efficiency. A slight increase in pointing error results in a rapid rise in the scintillation index, while a larger beam divergence angle can help minimize the impact of scintillation. Adapting the beam's divergence angle based on the pointing error between the optical transceivers can reduce the effects of scintillation and improve the average spectral efficiency and channel capacity. Additionally, the relationship between pointing error, scintillation, and the determination of the optical beam divergence angle in terms of beam divergence and average spectral efficiency and channel capacity is examined, and theoretical evaluations further confirm the method's effectiveness in reducing scintillation in the presence of pointing errors. Furthermore, the simultaneous use of OFDM adaptive beam divergence control and modulation could significantly enhance the data rate. This approach aims to reduce the impact of scintillation in UAV FSO links, which often experience significant losses due to unpredictable fluctuations in the atmosphere's refractive index. The results of the simulations indicate that the integrated 4-QAM-OFDM-FSO framework can realize high data transmission rates, efficiently serving front-haul and backhaul needs, thereby signifying a significant evolutionary leap for the next generation of wireless technology. The numerical findings demonstrate the significant impact of the coherent FSO OFDM optical wireless communication (OWC) setup in UAV wireless communications to ground links, particularly in mitigating the effects of strong turbulence and pointing errors (PEs). Through the integration of spatial coherence diversity and adaptive modulation OFDM in the coherent OWC, there has been a noticeable enhancement in the average spectral efficiency (ASE). Notably, our results indicate an ASE of 53 bits/s/Hz and 37 bits/s/Hz achieved at an average transmitted optical power of 10 dBm for an aperture diameter of 10 cm, without and with PEs for the coherent OWC-FSO OFDM UAV technique, respectively. The proposed method was validated through simulations, demonstrating both improved average spectral efficiency and effective reduction of the scintillation effect. This approach holds promise for mitigating scintillation effects in UAV-FSO links.
引用
收藏
相关论文
共 50 条
  • [31] Performances of Free-Space Optical Communication System Over Strong Turbulence
    Darusalam, Ucuk
    Priambodo, Purnomo Sidi
    Sudibyo, Harry
    Rahardjo, Eko Tjipto
    MAKARA JOURNAL OF TECHNOLOGY, 2014, 18 (01): : 17 - 23
  • [32] Improved OFDM Allocation Scheme for Crosstalk Mitigation in Multiple Free-Space Optical Interconnection Links
    Chen, Jung-Chieh
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (23) : 4699 - 4706
  • [33] Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers
    Abtahi, Mohammad
    Lemieux, Pascal
    Mathlouthi, Walid
    Rusch, Leslie Ann
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) : 4966 - 4973
  • [34] Performance Analysis of Multiple UAV-Based Hybrid Free-Space Optical/Radio Frequency Aeronautical Communication System in Mobile Scenarios
    Zhang, Xiwen
    Zhao, Shanghong
    Wang, Yuan
    Hu, Hang
    Yang, Guangmingzi
    Song, Xinkang
    Li, Xin
    Li, Jianjia
    DRONES, 2024, 8 (12)
  • [35] Automatic mitigation of dynamic atmospheric turbulence using optical phase conjugation for coherent free-space optical communications
    Zhou, Huibin
    Su, Xinzhou
    Duan, Yuxiang
    Zuo, Yue
    Jiang, Zile
    Ramakrishnan, Muralekrishnan
    Tepper, Jan
    Ziegler, Volker
    Boyd, Robert w.
    Tur, Moshe
    Willner, Alan e.
    OPTICA, 2025, 12 (02): : 158 - 167
  • [36] Free-Space Adaptive Optical Communication Systems Against Atmospheric Turbulence and Device Vibrations
    Liang, Yize
    Su, Xinzhou
    Wang, Lulu
    Wang, Jian
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [37] A Study on Atmospheric Turbulence Effects in Full-Optical Free-Space Communication Systems
    Wu, Xueying
    Liu, Peng
    Matsumoto, Mitsuji
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [38] Performance analysis of free-space optical communication systems over atmospheric turbulence channels
    Nistazakis, H. E.
    Tsiftsis, T. A.
    Tombras, G. S.
    IET COMMUNICATIONS, 2009, 3 (08) : 1402 - 1409
  • [39] Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence
    Ren, Yongxiong
    Dang, Anhong
    Liu, Ling
    Guo, Hong
    APPLIED OPTICS, 2012, 51 (30) : 7246 - 7254
  • [40] Beyond 1 Tb/s Free-space Optical Transmission in the Presence of Atmospheric Turbulence
    Qu, Zhen
    Djordjevic, Ivan B.
    2017 PHOTONICS NORTH (PN), 2017,