共 50 条
Bunce-Deddens Algebras as Quantum Gromov-Hausdorff Distance Limits of Circle Algebras
被引:0
|作者:
Konrad Aguilar
Frédéric Latrémolière
Timothy Rainone
机构:
[1] Pomona College,Department of Mathematics and Statistics
[2] University of Denver,Department of Mathematics
[3] Occidental College,Department of Mathematics
来源:
关键词:
Noncommutative metric geometry;
Gromov-Hausdorff convergence;
Monge-Kantorovich distance;
Quantum Metric Spaces;
Lip-norms;
Bunce-Deddens algebras;
AT-algebras;
46L89;
46L30;
58B34;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that Bunce-Deddens algebras, which are AT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {T}}$$\end{document}-algebras, are also limits of circle algebras for Rieffel’s quantum Gromov-Hausdorff distance, and moreover, form a continuous family indexed by the Baire space. To this end, we endow Bunce-Deddens algebras with a quantum metric structure, a step which requires that we reconcile the constructions of the Latrémolière’s Gromov-Hausdorff propinquity and Rieffel’s quantum Gromov-Hausdorff distance when working on order-unit quantum metric spaces. This work thus continues the study of the connection between inductive limits and metric limits.
引用
收藏
相关论文