Bunce-Deddens Algebras as Quantum Gromov-Hausdorff Distance Limits of Circle Algebras

被引:0
|
作者
Konrad Aguilar
Frédéric Latrémolière
Timothy Rainone
机构
[1] Pomona College,Department of Mathematics and Statistics
[2] University of Denver,Department of Mathematics
[3] Occidental College,Department of Mathematics
来源
关键词
Noncommutative metric geometry; Gromov-Hausdorff convergence; Monge-Kantorovich distance; Quantum Metric Spaces; Lip-norms; Bunce-Deddens algebras; AT-algebras; 46L89; 46L30; 58B34;
D O I
暂无
中图分类号
学科分类号
摘要
We show that Bunce-Deddens algebras, which are AT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}-algebras, are also limits of circle algebras for Rieffel’s quantum Gromov-Hausdorff distance, and moreover, form a continuous family indexed by the Baire space. To this end, we endow Bunce-Deddens algebras with a quantum metric structure, a step which requires that we reconcile the constructions of the Latrémolière’s Gromov-Hausdorff propinquity and Rieffel’s quantum Gromov-Hausdorff distance when working on order-unit quantum metric spaces. This work thus continues the study of the connection between inductive limits and metric limits.
引用
收藏
相关论文
共 50 条
  • [31] Approximating Gromov-Hausdorff distance in Euclidean space
    Majhi, Sushovan
    Vitter, Jeffrey
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 116
  • [32] Limits of Manifolds in the Gromov-Hausdorff Metric Space
    Hegenbarth, Friedrich
    Repovs, Dusan D.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [33] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 529 - 540
  • [34] Estimates for Modified (Euclidean) Gromov-Hausdorff Distance
    Malysheva, O. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2024, 79 (04) : 201 - 205
  • [35] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (02)
  • [36] The Gromov-Hausdorff Distance between Vertex Sets of Regular Polygons Inscribed in a Single Circle
    Talipov, T. K.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2023, 78 (03) : 130 - 135
  • [37] Zero asymptotic Lipschitz distance and finite Gromov-Hausdorff distance
    Luo-fei LIU College of Mathematics and Computer Science
    Science in China(Series A:Mathematics), 2007, (03) : 345 - 350
  • [38] Quantum Metric Spaces and the Gromov-Hausdorff Propinquity
    Latremoliere, Frederic
    NONCOMMUTATIVE GEOMETRY AND OPTIMAL TRANSPORT, 2016, 676 : 47 - +
  • [39] Zero asymptotic Lipschitz distance and finite Gromov-Hausdorff distance
    Luo-fei Liu
    Science in China Series A: Mathematics, 2007, 50 : 345 - 350
  • [40] Zero asymptotic Lipschitz distance and finite Gromov-Hausdorff distance
    Liu, Luo-fei
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03): : 345 - 350