We show that Bunce-Deddens algebras, which are AT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {T}}$$\end{document}-algebras, are also limits of circle algebras for Rieffel’s quantum Gromov-Hausdorff distance, and moreover, form a continuous family indexed by the Baire space. To this end, we endow Bunce-Deddens algebras with a quantum metric structure, a step which requires that we reconcile the constructions of the Latrémolière’s Gromov-Hausdorff propinquity and Rieffel’s quantum Gromov-Hausdorff distance when working on order-unit quantum metric spaces. This work thus continues the study of the connection between inductive limits and metric limits.
机构:
Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USAIndiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
Klimek, Slawomir
McBride, Matt
论文数: 0引用数: 0
h-index: 0
机构:
Mississippi State Univ, Dept Math & Stat, 175 Presidents Cir, Mississippi State, MS 39762 USAIndiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
McBride, Matt
Peoples, J. Wilson
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, 107 McAllister Bld,Univ Pk, State Coll, PA 16802 USAIndiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA