Bunce-Deddens Algebras as Quantum Gromov-Hausdorff Distance Limits of Circle Algebras

被引:0
|
作者
Konrad Aguilar
Frédéric Latrémolière
Timothy Rainone
机构
[1] Pomona College,Department of Mathematics and Statistics
[2] University of Denver,Department of Mathematics
[3] Occidental College,Department of Mathematics
来源
关键词
Noncommutative metric geometry; Gromov-Hausdorff convergence; Monge-Kantorovich distance; Quantum Metric Spaces; Lip-norms; Bunce-Deddens algebras; AT-algebras; 46L89; 46L30; 58B34;
D O I
暂无
中图分类号
学科分类号
摘要
We show that Bunce-Deddens algebras, which are AT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}-algebras, are also limits of circle algebras for Rieffel’s quantum Gromov-Hausdorff distance, and moreover, form a continuous family indexed by the Baire space. To this end, we endow Bunce-Deddens algebras with a quantum metric structure, a step which requires that we reconcile the constructions of the Latrémolière’s Gromov-Hausdorff propinquity and Rieffel’s quantum Gromov-Hausdorff distance when working on order-unit quantum metric spaces. This work thus continues the study of the connection between inductive limits and metric limits.
引用
收藏
相关论文
共 50 条