On a stationary Schrödinger equation with periodic magnetic potential

被引:0
|
作者
Pascal Bégout
Ian Schindler
机构
[1] Université Toulouse I Capitole,Institut de Mathématiques de Toulouse and TSE
关键词
Stationary Schrödinger equation; Periodic magnetic potential; Weak solution; Cocompactness; 35Q55 (35A01, 35D30);
D O I
暂无
中图分类号
学科分类号
摘要
We prove existence results for a stationary Schrödinger equation with periodic magnetic potential satisfying a local integrability condition on the whole space using a critical value function.
引用
收藏
相关论文
共 50 条
  • [41] Quasilinear theory for the nonlinear Schrödinger equation with periodic coefficients
    S. B. Medvedev
    M. P. Fedoruk
    Journal of Experimental and Theoretical Physics Letters, 2004, 79 : 16 - 20
  • [42] Nonlinear perturbations of a periodic Schrödinger equation with supercritical growth
    Giovany M. Figueiredo
    Olimpio H. Miyagaki
    Sandra Im. Moreira
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2379 - 2394
  • [43] Orbital stability of periodic waves for the nonlinear Schrödinger equation
    Thierry Gallay
    Mariana Hǎrǎgus
    Journal of Dynamics and Differential Equations, 2007, 19 : 825 - 865
  • [44] Dark Solitons for the Defocusing Cubic Nonlinear Schr?dinger Equation with the Spatially Periodic Potential and Nonlinearity
    闫振亚
    闫方驰
    CommunicationsinTheoreticalPhysics, 2015, 64 (09) : 309 - 319
  • [46] On the Existence of Dark Solitons in a Cubic-Quintic Nonlinear Schrödinger Equation with a Periodic Potential
    Pedro J. Torres
    Vladimir V. Konotop
    Communications in Mathematical Physics, 2008, 282 : 1 - 9
  • [47] A Semilinear Schrödinger Equation in the Presence of a Magnetic Field
    Gianni Arioli
    Andrzej Szulkin
    Archive for Rational Mechanics and Analysis, 2003, 170 : 277 - 295
  • [48] Normalized Solutions to the Fractional Schrödinger Equation with Potential
    Jiabin Zuo
    Chungen Liu
    Calogero Vetro
    Mediterranean Journal of Mathematics, 2023, 20
  • [49] Some remarks on the Schrödinger equation with a potential in LrtLsx
    Piero D' Ancona
    Vittoria Pierfelice
    Nicola Visciglia
    Mathematische Annalen, 2005, 333 : 271 - 290
  • [50] Exact solution of Schrödinger equation for Pseudoharmonic potential
    Ramazan Sever
    Cevdet Tezcan
    Metin Aktaş
    Özlem Yeşiltaş
    Journal of Mathematical Chemistry, 2008, 43 : 845 - 851