On a stationary Schrödinger equation with periodic magnetic potential

被引:0
|
作者
Pascal Bégout
Ian Schindler
机构
[1] Université Toulouse I Capitole,Institut de Mathématiques de Toulouse and TSE
关键词
Stationary Schrödinger equation; Periodic magnetic potential; Weak solution; Cocompactness; 35Q55 (35A01, 35D30);
D O I
暂无
中图分类号
学科分类号
摘要
We prove existence results for a stationary Schrödinger equation with periodic magnetic potential satisfying a local integrability condition on the whole space using a critical value function.
引用
收藏
相关论文
共 50 条
  • [21] On Monodromy Matrices for a Difference Schrödinger Equation on the Real Line with a Small Periodic Potential
    K. S. Sedov
    A. A. Fedotov
    Journal of Mathematical Sciences, 2024, 283 (4) : 650 - 664
  • [22] On the Schrödinger equation with potential in modulation spaces
    Elena Cordero
    Fabio Nicola
    Journal of Pseudo-Differential Operators and Applications, 2014, 5 : 319 - 341
  • [23] Symmetry of the Schrödinger Equation with Variable Potential
    Wilhelm Fushchych
    Zoya Symenoh
    Ivan Tsyfra
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 13 - 22
  • [24] Fuzzy stationary Schrödinger equation with correlated fuzzy boundaries
    Salgado, Silvio Antonio Bueno
    Esmi, Estevao
    de Souza, Sergio Martins
    Rojas, Onofre
    de Barros, Laecio Carvalho
    SOFT COMPUTING, 2024, 28 (03) : 1943 - 1955
  • [25] Stationary states of extended nonlinear Schrödinger equation with a source
    M. A. Borich
    V. V. Smagin
    A. P. Tankeev
    The Physics of Metals and Metallography, 2007, 103 : 118 - 130
  • [26] A Stationary Phase Approach to the Weak Coupling Schrödinger Equation
    Sivan Rottenstreich
    Journal of Statistical Physics, 2006, 124 : 47 - 86
  • [27] Unbounded Solutions of the Stationary Schrödinger Equation on Riemannian Manifolds
    Alexander G. Losev
    Elena A. Mazepa
    Victoriya Y. Chebanenko
    Computational Methods and Function Theory, 2004, 3 (2) : 443 - 451
  • [28] Fuzzy stationary Schrödinger equation with correlated fuzzy boundaries
    Silvio Antonio Bueno Salgado
    Estevão Esmi
    Sérgio Martins de Souza
    Onofre Rojas
    Laécio Carvalho de Barros
    Soft Computing, 2024, 28 : 1943 - 1955
  • [29] Stationary solutions for nonlinear dispersive Schrödinger’s equation
    Anjan Biswas
    Chaudry Masood Khalique
    Nonlinear Dynamics, 2011, 63 : 623 - 626
  • [30] Multiple solutions to a nonlinear Schrödinger equation with Aharonov–Bohm magnetic potential
    Mónica Clapp
    Andrzej Szulkin
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 229 - 248