On boundedness and compactness of Riemann-Liouville fractional operators

被引:0
|
作者
S. M. Farsani
机构
[1] People’s Friendship University of Russia,
来源
关键词
Riemann-Liouville fractional operator; Lebesgue space; weighted inequality;
D O I
暂无
中图分类号
学科分类号
摘要
Let α ∈ (0, 1). Consider the Riemann-Liouville fractional operator of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f \to T_\alpha f(x): = v(x)\int\limits_0^x {\frac{{f(y)u(y)dy}} {{(x - y)^{1 - \alpha } }}} ,x > 0, $\end{document} with locally integrable weight functions u and v. We find criteria for the Lp → Lq-boundedness and compactness of Tα when 0 < p,q < ∞, p > 1/α under the condition that u monotonely decreases on ℝ+:= [0,∞). The dual versions of this result are given.
引用
收藏
页码:368 / 378
页数:10
相关论文
共 50 条
  • [41] On right multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 377 - 387
  • [42] A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES
    Carbotti, Alessandro
    Comi, Giovanni E.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 17 - 54
  • [43] Riemann-Liouville and Weyl fractional oscillator processes
    Lim, S. C.
    Eab, Chai Hok
    PHYSICS LETTERS A, 2006, 355 (02) : 87 - 93
  • [44] Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1502 - 1523
  • [45] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [46] Generalizations of Riemann-Liouville fractional integrals and applications
    Lan, Kunquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) : 12833 - 12870
  • [47] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [48] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [49] Riemann-Liouville q-Fractional Calculi
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 107 - 146
  • [50] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236