On boundedness and compactness of Riemann-Liouville fractional operators

被引:0
|
作者
S. M. Farsani
机构
[1] People’s Friendship University of Russia,
来源
关键词
Riemann-Liouville fractional operator; Lebesgue space; weighted inequality;
D O I
暂无
中图分类号
学科分类号
摘要
Let α ∈ (0, 1). Consider the Riemann-Liouville fractional operator of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f \to T_\alpha f(x): = v(x)\int\limits_0^x {\frac{{f(y)u(y)dy}} {{(x - y)^{1 - \alpha } }}} ,x > 0, $\end{document} with locally integrable weight functions u and v. We find criteria for the Lp → Lq-boundedness and compactness of Tα when 0 < p,q < ∞, p > 1/α under the condition that u monotonely decreases on ℝ+:= [0,∞). The dual versions of this result are given.
引用
收藏
页码:368 / 378
页数:10
相关论文
共 50 条
  • [31] Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case
    Ferreira, M.
    Vieira, N.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (05) : 1081 - 1100
  • [32] HARDY-TYPE INEQUALITIES FOR AN EXTENSION OF THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Iqbal, Sajid
    Farid, Ghulam
    Pecaric, Josip
    Kashuri, Artion
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 797 - 813
  • [33] Extended incomplete Riemann-Liouville fractional integral operators and related special functions
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (05): : 1723 - 1747
  • [34] Riemann-Liouville Fractional Integral Type Deep Neural Network Kantorovich Operators
    Baxhaku, Behar
    Agrawal, Purshottam Narain
    Bajpeyi, Shivam
    IRANIAN JOURNAL OF SCIENCE, 2024,
  • [35] Further Midpoint Inequalities via Generalized Fractional Operators in Riemann-Liouville Sense
    Hyder, Abd-Allah
    Budak, Huseyin
    Almoneef, Areej A.
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [36] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [37] THE NONEMPTINESS AND COMPACTNESS OF MILD SOLUTION SETS FOR RIEMANN-LIOUVILLE FRACTIONAL DELAY DIFFERENTIAL VARIATIONAL INEQUALITIES
    蒋宜蓉
    魏周超
    卢景苹
    ActaMathematicaScientia, 2021, 41 (05) : 1569 - 1578
  • [38] The Nonemptiness and Compactness of Mild Solution Sets for Riemann-Liouville Fractional Delay Differential Variational Inequalities
    Yirong Jiang
    Zhouchao Wei
    Jingping Lu
    Acta Mathematica Scientia, 2021, 41 : 1569 - 1578
  • [39] The Nonemptiness and Compactness of Mild Solution Sets for Riemann-Liouville Fractional Delay Differential Variational Inequalities
    Jiang, Yirong
    Wei, Zhouchao
    Lu, Jingping
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1569 - 1578
  • [40] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924