Convergence of Eigenfunctions of a Steklov-Type Problem in a Half-Strip with a Small Hole

被引:0
|
作者
Davletov D.B. [1 ]
Davletov O.B. [2 ]
机构
[1] M. Akmulla Bashkir State Pedagogical University, Ufa
[2] Ufa State Petroleum Technological University, Ufa
关键词
47A10; 58J37; convergence; eigenvalue; half-strip; singular perturbation; small hole; Steklov problem;
D O I
10.1007/s10958-019-04444-1
中图分类号
学科分类号
摘要
We consider a Steklov-type problem for the Laplace operator in a half-strip containing a small hole with the Dirichlet conditions on the lateral boundaries and the boundary of the hole and the Steklov spectral condition on the base of the half-strip. We prove that eigenvalues of this problem vanish as the small parameter (the “diameter” of the hole) tends to zero. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:549 / 555
页数:6
相关论文
共 50 条