Convergence of Eigenfunctions of a Steklov-Type Problem in a Half-Strip with a Small Hole

被引:0
|
作者
Davletov D.B. [1 ]
Davletov O.B. [2 ]
机构
[1] M. Akmulla Bashkir State Pedagogical University, Ufa
[2] Ufa State Petroleum Technological University, Ufa
关键词
47A10; 58J37; convergence; eigenvalue; half-strip; singular perturbation; small hole; Steklov problem;
D O I
10.1007/s10958-019-04444-1
中图分类号
学科分类号
摘要
We consider a Steklov-type problem for the Laplace operator in a half-strip containing a small hole with the Dirichlet conditions on the lateral boundaries and the boundary of the hole and the Steklov spectral condition on the base of the half-strip. We prove that eigenvalues of this problem vanish as the small parameter (the “diameter” of the hole) tends to zero. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:549 / 555
页数:6
相关论文
共 50 条
  • [21] THE DIRICHLET PROBLEM FOR BIHARMONIC EQUATION IN THE HALF-STRIP
    GOMILKO, AM
    MELESHKO, VV
    DOKLADY AKADEMII NAUK SSSR, 1987, 294 (05): : 1045 - 1048
  • [22] Mixed problem for the Kawahara equation in a half-strip
    R. V. Kuvshinov
    A. V. Faminskii
    Differential Equations, 2009, 45
  • [23] Mixed problem for the Kawahara equation in a half-strip
    Kuvshinov, R. V.
    Faminskii, A. V.
    DIFFERENTIAL EQUATIONS, 2009, 45 (03) : 404 - 415
  • [24] On singular perturbations of a Steklov-type problem with asymptotically degenerate spectrum
    A. G. Chechkina
    Doklady Mathematics, 2011, 84 : 695 - 698
  • [25] Dirichlet problem for the mixed type equation with two degeneration lines in a half-strip
    Vagapov, V. Z.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (01): : 7 - 19
  • [26] On Singular Perturbations of a Steklov-Type Problem with Asymptotically Degenerate Spectrum
    Chechkina, A. G.
    DOKLADY MATHEMATICS, 2011, 84 (02) : 695 - 698
  • [27] STEKLOV TYPE PROBLEM IN A HALF-CYLINDER WITH A SMALL CAVITY
    Davletov, D. B.
    Kozhevnikov, D. V.
    UFA MATHEMATICAL JOURNAL, 2016, 8 (04): : 62 - 87
  • [28] The classical Dirichlet problem for the biharmonic equation in a half-strip
    Gomilko, AM
    DIFFERENTIAL EQUATIONS, 1998, 34 (02) : 231 - 241
  • [29] Biharmonic Problem with Dirichlet and Steklov-Type Boundary Conditions in Weighted Spaces
    H. A. Matevossian
    Computational Mathematics and Mathematical Physics, 2021, 61 : 938 - 952
  • [30] An inhomogeneous problem for an elastic half-strip: An exact solution
    Kovalenko, Mikhail D.
    Menshova, Irina, V
    Kerzhaev, Alexander P.
    Yu, Guangming
    MATHEMATICS AND MECHANICS OF SOLIDS, 2021, 26 (11) : 1565 - 1580