Hydrodynamic synchronization of flagellar oscillators

被引:0
|
作者
Benjamin Friedrich
机构
[1] Max Planck Institute for the Physics of Complex Systems,
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways.
引用
收藏
页码:2353 / 2368
页数:15
相关论文
共 50 条
  • [31] Synchronization and desynchronization of neural oscillators
    Tonnelier, A
    Meignen, S
    Bosch, H
    Demongeot, J
    NEURAL NETWORKS, 1999, 12 (09) : 1213 - 1228
  • [32] Synchronization in networks of mobile oscillators
    Fujiwara, Naoya
    Kurths, Juergen
    Diaz-Guilera, Albert
    PHYSICAL REVIEW E, 2011, 83 (02):
  • [33] Synchronization of driven nonlinear oscillators
    Jensen, RV
    AMERICAN JOURNAL OF PHYSICS, 2002, 70 (06) : 607 - 619
  • [34] Engineering synchronization of chaotic oscillators
    Padmanaban, E.
    Dana, Syamal K.
    INTERNATIONAL CONFERENCE ON APPLICATIONS IN NONLINEAR DYNAMICS (ICAND 2010), 2010, 1339 : 236 - 253
  • [35] Synchronization of Multiple Optomechanical Oscillators
    Zhang, Mian
    Lipson, Michal
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [36] Synchronization of oscillators in complex networks
    Louis M. Pecora
    Pramana, 2008, 70 : 1175 - 1198
  • [37] Generalized synchronization of chaotic oscillators
    A. A. Koronovskiĭ
    O. I. Moskalenko
    A. E. Hramov
    Technical Physics Letters, 2006, 32 : 113 - 116
  • [38] Synchronization of oscillators in complex networks
    Pecora, Louis M.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (06): : 1175 - 1198
  • [39] Generalized synchronization of chaotic oscillators
    Koronovskii, A. A.
    Moskalenko, O. I.
    Hramov, A. E.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (02) : 113 - 116
  • [40] SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS
    Dong, Jiu-Gang
    Xue, Xiaoping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (02) : 465 - 480