Hydrodynamic synchronization of flagellar oscillators

被引:0
|
作者
Benjamin Friedrich
机构
[1] Max Planck Institute for the Physics of Complex Systems,
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways.
引用
收藏
页码:2353 / 2368
页数:15
相关论文
共 50 条
  • [21] Breakdown of synchronization in chaotic oscillators and noisy oscillators
    Imabayashi, Ryo
    Uwate, Yoko
    Nishio, Yoshifumni
    2007 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1-3, 2007, : 922 - 925
  • [22] Flagellar length synchronization in Chlamydomonas.
    Dutta, S.
    Avasthi, P.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [23] PERFORMANCE AND APPLICATIONS OF HYDRODYNAMIC OSCILLATORS
    BOUYOUCOS, JV
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1956, 28 (04): : 802 - 802
  • [24] Synchronization of a pair of nonholonomic oscillators
    Mohseni, Ali
    Tallapragada, Phanindra
    IFAC PAPERSONLINE, 2023, 56 (03): : 241 - 246
  • [25] Synchronization in repulsively coupled oscillators
    Mirzaei, Simin
    Anwar, Md Sayeed
    Parastesh, Fatemeh
    Jafari, Sajad
    Ghosh, Dibakar
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [26] MUTUAL SYNCHRONIZATION OF 2 OSCILLATORS
    SUEZAKI, T
    MORI, S
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1965, 48 (09): : 56 - &
  • [27] HARMONIC SYNCHRONIZATION OF NONLINEAR OSCILLATORS
    SCHMIDEG, I
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (08): : 1250 - &
  • [28] Synchronization in lattices of coupled oscillators
    Afraimovich, V.S.
    Chow, S.-N.
    Hale, J.K.
    Physica D: Nonlinear Phenomena, 1997, 103 (1-4): : 442 - 451
  • [29] Synchronization conditions for Lyapunov oscillators
    Schmidt, Gerd S.
    Ebenbauer, Christian
    Allgoewer, Frank
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6230 - 6235
  • [30] On Exponential Synchronization of Kuramoto Oscillators
    Chopra, Nikhil
    Spong, Mark W.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 353 - 357