Sharp power mean bounds for two Sándor–Yang means

被引:0
|
作者
Xiao-Hong He
Wei-Mao Qian
Hui-Zuo Xu
Yu-Ming Chu
机构
[1] Quzhou Broadcast and TV University,Office of Academic Affairs
[2] Huzhou Vocational and Technical College,School of Continuing Education
[3] Wenzhou Broadcast and TV University,School of Economics and Management
[4] Huzhou University,Department of Mathematics
关键词
Geometric mean; Quadratic mean; Yang mean; Sándor–Yang mean; Power mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we prove that the double inequalities Mα(a,b)<Q(a,b)eG(a,b)/U(a,b)-1<Mβ(a,b),Mλ(a,b)<G(a,b)eQ(a,b)/V(a,b)-1<Mμ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_{\alpha }(a,b)< & {} Q(a,b)e^{G(a,b)/U(a,b)-1}<M_{\beta }(a,b), \\ M_{\lambda }(a,b)< & {} G(a,b)e^{Q(a,b)/V(a,b)-1}<M_{\mu }(a,b) \end{aligned}$$\end{document}hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b>0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ne b$$\end{document} if and only if α≤2log2/(2+log2)=0.5147⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le 2\log 2/(2+\log 2)=0.5147\cdots $$\end{document}, β≥2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 2/3$$\end{document}, λ≤2log2/(2-log2)=1.0607⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \le 2\log 2/(2-\log 2)=1.0607\cdots $$\end{document} and μ≥4/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \ge 4/3$$\end{document}, where Mp(a,b)=[(ap+bp)/2]1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{p}(a,b)=[(a^{p}+b^{p})/2]^{1/p}$$\end{document}(p≠0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p\ne 0)$$\end{document}, M0(a,b)=G(a,b)=ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{0}(a,b)=G(a,b)=\sqrt{ab}$$\end{document}, Q(a,b)=(a2+b2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(a,b)=\sqrt{(a^{2}+b^{2})/2}$$\end{document}, U(a,b)=(a-b)/[2˘arctan((a-b)/2ab)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(a,b)=(a-b)/[\sqrt{2\breve{}}\arctan ((a-b)/\sqrt{2ab})]$$\end{document} and V(a,b)=(a-b)/[2sinh-1((a-b)/2ab)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(a,b)=(a-b)/[\sqrt{2}\sinh ^{-1}((a-b)/\sqrt{2ab})]$$\end{document} are respectively the pth power, geometric, quadratic, first Yang and second Yang means, and sinh-1(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh ^{-1}(x)$$\end{document} is the inverse hyperbolic sine function.
引用
收藏
页码:2627 / 2638
页数:11
相关论文
共 50 条
  • [41] SHARP LEHMER MEAN BOUNDS FOR NEUMAN MEANS WITH APPLICATIONS
    Chu, Yu-Ming
    Qian, Wei-Mao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 583 - 596
  • [42] Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
    Qian, Wei-Mao
    He, Zai-Yin
    Zhang, Hong-Wei
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [43] Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
    Wei-Mao Qian
    Zai-Yin He
    Hong-Wei Zhang
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2019
  • [44] Sharp Bounds for Power Mean in Terms of Generalized Heronian Mean
    Gao, Hongya
    Guo, Jianling
    Yu, Wanguo
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [45] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [46] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [47] Sharp power mean bounds for the Gaussian hypergeometric function
    Richards, KC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (01) : 303 - 313
  • [48] Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
    Chu, Yu-Ming
    Wu, Li-Min
    Song, Ying-Qing
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [49] Sharp bounds for the Sandor-Yang means in terms of arithmetic and contra-harmonic means
    Xu, Hui-Zuo
    Chu, Yu-Ming
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [50] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)