Sharp power mean bounds for two Sándor–Yang means

被引:0
|
作者
Xiao-Hong He
Wei-Mao Qian
Hui-Zuo Xu
Yu-Ming Chu
机构
[1] Quzhou Broadcast and TV University,Office of Academic Affairs
[2] Huzhou Vocational and Technical College,School of Continuing Education
[3] Wenzhou Broadcast and TV University,School of Economics and Management
[4] Huzhou University,Department of Mathematics
关键词
Geometric mean; Quadratic mean; Yang mean; Sándor–Yang mean; Power mean; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we prove that the double inequalities Mα(a,b)<Q(a,b)eG(a,b)/U(a,b)-1<Mβ(a,b),Mλ(a,b)<G(a,b)eQ(a,b)/V(a,b)-1<Mμ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M_{\alpha }(a,b)< & {} Q(a,b)e^{G(a,b)/U(a,b)-1}<M_{\beta }(a,b), \\ M_{\lambda }(a,b)< & {} G(a,b)e^{Q(a,b)/V(a,b)-1}<M_{\mu }(a,b) \end{aligned}$$\end{document}hold for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b>0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ne b$$\end{document} if and only if α≤2log2/(2+log2)=0.5147⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le 2\log 2/(2+\log 2)=0.5147\cdots $$\end{document}, β≥2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \ge 2/3$$\end{document}, λ≤2log2/(2-log2)=1.0607⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \le 2\log 2/(2-\log 2)=1.0607\cdots $$\end{document} and μ≥4/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \ge 4/3$$\end{document}, where Mp(a,b)=[(ap+bp)/2]1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{p}(a,b)=[(a^{p}+b^{p})/2]^{1/p}$$\end{document}(p≠0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p\ne 0)$$\end{document}, M0(a,b)=G(a,b)=ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{0}(a,b)=G(a,b)=\sqrt{ab}$$\end{document}, Q(a,b)=(a2+b2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(a,b)=\sqrt{(a^{2}+b^{2})/2}$$\end{document}, U(a,b)=(a-b)/[2˘arctan((a-b)/2ab)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(a,b)=(a-b)/[\sqrt{2\breve{}}\arctan ((a-b)/\sqrt{2ab})]$$\end{document} and V(a,b)=(a-b)/[2sinh-1((a-b)/2ab)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(a,b)=(a-b)/[\sqrt{2}\sinh ^{-1}((a-b)/\sqrt{2ab})]$$\end{document} are respectively the pth power, geometric, quadratic, first Yang and second Yang means, and sinh-1(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh ^{-1}(x)$$\end{document} is the inverse hyperbolic sine function.
引用
收藏
页码:2627 / 2638
页数:11
相关论文
共 50 条
  • [31] Sharp Geometric Mean Bounds for Neuman Means
    Zhang, Yan
    Chu, Yu-Ming
    Jiang, Yun-Liang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] Sharp bounds for the Neuman-Sandor mean in terms of the power and contraharmonic means
    Jiang, Wei-Dong
    Qi, Feng
    COGENT MATHEMATICS, 2015, 2
  • [33] Two Optimal Inequalities Related to the Sándor-Yang Type Mean and One-parameter Mean
    YANG YUE-YING
    QIAN WEI-MAO
    Ji You-qing
    CommunicationsinMathematicalResearch, 2016, 32 (04) : 352 - 358
  • [34] Sharp bounds for Heinz mean by Heron mean and other means
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 723 - 731
  • [35] Optimal power mean bounds for the second Yang mean
    Li, Jun-Feng
    Yang, Zhen-Hang
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 9
  • [36] Optimal power mean bounds for the second Yang mean
    Jun-Feng Li
    Zhen-Hang Yang
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2016
  • [37] SHARP POWER MEAN BOUNDS FOR THE SECOND NEUMAN MEAN
    He, Xiao-Hong
    Yang, Yue-Ying
    Qian, Wei-Mao
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 801 - 809
  • [38] Sharp bounds by the power mean for the generalized Heronian mean
    Li, Yong-Min
    Long, Bo-Yong
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [39] Sharp bounds by the power mean for the generalized Heronian mean
    Yong-Min Li
    Bo-Yong Long
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2012
  • [40] Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means
    Jing-Jing Chen
    Jian-Jun Lei
    Bo-Yong Long
    Journal of Inequalities and Applications, 2017