The Isomorphism Problem of Normalized Unit Groups of Group Algebras of a Class of Finite 2-groups

被引:0
|
作者
Yu Lei Wang
He Guo Liu
机构
[1] He’nan University of Technology,Department of Mathematics
[2] Hainan University,Department of Mathematics
关键词
isomorphism problem; normalized unit; Frattini subgroup; finite 2-group; 20C05; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime and Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} be a finite field of p elements. Let FpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}G$$\end{document} denote the group algebra of the finite p-group G over the field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} and V(FpG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V({\mathbb{F}_p}G)$$\end{document} denote the group of normalized units in FpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}G$$\end{document}. Suppose that G and H are finite p-groups given by a central extension of the form 1→ℤpm→G→ℤp×⋯×ℤp→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \to {\mathbb{Z}_{{p^m}}} \to G \to {\mathbb{Z}_p} \times \cdots \times {\mathbb{Z}_p} \to 1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G^\prime } \cong {\mathbb{Z}_p},\,\,m \ge 1$$\end{document}. Then V(FpG)≅V(FpH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V({\mathbb{F}_p}G) \cong V({\mathbb{F}_p}H)$$\end{document} if and only if G ≅ H. Balogh and Bovdi only solved the isomorphism problem when p is odd. In this paper, the case p = 2 is determined.
引用
收藏
页码:2275 / 2282
页数:7
相关论文
共 50 条
  • [41] Unit groups of group algebras of some small groups
    Gaohua Tang
    Yangjiang Wei
    Yuanlin Li
    Czechoslovak Mathematical Journal, 2014, 64 : 149 - 157
  • [43] The codegree isomorphism problem for finite simple groups
    Hung, Nguyen N.
    Moreto, Alexander
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (03): : 1157 - 1179
  • [44] Unit groups of group algebras of groups of order 20
    Ansari, Sheere Farhat
    Sahai, Meena
    QUAESTIONES MATHEMATICAE, 2021, 44 (04) : 503 - 511
  • [45] Lie algebras, 2-groups and cotriangular spaces
    Brouwer, Andries E.
    Cohen, Arjeh M.
    Cuypers, Hans
    Hall, Jonathan I.
    Postma, Erik
    ADVANCES IN GEOMETRY, 2012, 12 (01) : 1 - 17
  • [46] An induction theorem for the unit groups of Burnside rings of 2-groups
    Yalçin, E
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 105 - 127
  • [47] ISOMORPHISM OF REAL GROUP ALGEBRAS OF ABELIAN-GROUPS
    BERMAN, SD
    BOGDAN, VG
    MATHEMATICAL NOTES, 1977, 21 (1-2) : 127 - 131
  • [48] On the isomorphism problem for C*-algebras of nilpotent Lie groups
    Beltita, Ingrid
    Beltita, Daniel
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2021, 13 (03) : 753 - 782
  • [49] Commuting automorphisms of finite 2-groups of almost maximal class, I
    Shahrabi, N. Azimi
    Akhavan-Malayeri, M.
    Vosooghpour, F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (11)
  • [50] On finite 2-groups with many involutions
    Baginski, C
    Malinowska, I
    ARCHIV DER MATHEMATIK, 2003, 81 (03) : 241 - 244