The Isomorphism Problem of Normalized Unit Groups of Group Algebras of a Class of Finite 2-groups

被引:0
|
作者
Yu Lei Wang
He Guo Liu
机构
[1] He’nan University of Technology,Department of Mathematics
[2] Hainan University,Department of Mathematics
关键词
isomorphism problem; normalized unit; Frattini subgroup; finite 2-group; 20C05; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime and Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} be a finite field of p elements. Let FpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}G$$\end{document} denote the group algebra of the finite p-group G over the field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} and V(FpG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V({\mathbb{F}_p}G)$$\end{document} denote the group of normalized units in FpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}G$$\end{document}. Suppose that G and H are finite p-groups given by a central extension of the form 1→ℤpm→G→ℤp×⋯×ℤp→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \to {\mathbb{Z}_{{p^m}}} \to G \to {\mathbb{Z}_p} \times \cdots \times {\mathbb{Z}_p} \to 1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G^\prime } \cong {\mathbb{Z}_p},\,\,m \ge 1$$\end{document}. Then V(FpG)≅V(FpH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V({\mathbb{F}_p}G) \cong V({\mathbb{F}_p}H)$$\end{document} if and only if G ≅ H. Balogh and Bovdi only solved the isomorphism problem when p is odd. In this paper, the case p = 2 is determined.
引用
收藏
页码:2275 / 2282
页数:7
相关论文
共 50 条
  • [31] ON COHOMOLOGY OF FINITE 2-GROUPS
    JOHNSON, DL
    INVENTIONES MATHEMATICAE, 1969, 7 (02) : 159 - &
  • [32] Description of a Class of 2-Groups
    Tatjana Gramushnjak
    Peeter Puusemp
    Journal of Nonlinear Mathematical Physics, 2006, 13 (Suppl 1) : 55 - 65
  • [33] Description of a class of 2-groups
    Gramushnjak, Tatjana
    Puusemp, Peeter
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 : 55 - 65
  • [34] Fuchs' problem for 2-groups
    Swartz, Eric
    Werner, Nicholas J.
    JOURNAL OF ALGEBRA, 2020, 556 : 225 - 245
  • [35] ON 2-GROUPS, ALL OF WHOSE FINITE SUBGROUPS ARE OF NILPOTENCY CLASS 2
    Lytkina, D. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : 1 - 3
  • [36] Finite 2-groups of rank 2
    Guo, Xiuyun
    Wang, Jiao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (1-2): : 81 - 93
  • [37] Non-isomorphic 2-groups with isomorphic modular group algebras
    Garcia-Lucas, Diego
    Margolis, Leo
    del Rio, Angel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (783): : 269 - 274
  • [38] Unit Groups of Group Algebras of Certain Dihedral Groups
    Sahai, M.
    Ansari, S. F.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 419 - 436
  • [39] Unit groups of group algebras of groups of order 18
    Sahai, Meena
    Ansari, Sheere Farhat
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3273 - 3282
  • [40] Unit groups of group algebras of some small groups
    Tang, Gaohua
    Wei, Yangjiang
    Li, Yuanlin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 149 - 157