Let p be a prime and Fp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_p}$$\end{document} be a finite field of p elements. Let FpG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_p}G$$\end{document} denote the group algebra of the finite p-group G over the field Fp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_p}$$\end{document} and V(FpG)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V({\mathbb{F}_p}G)$$\end{document} denote the group of normalized units in FpG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{F}_p}G$$\end{document}. Suppose that G and H are finite p-groups given by a central extension of the form 1→ℤpm→G→ℤp×⋯×ℤp→1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \to {\mathbb{Z}_{{p^m}}} \to G \to {\mathbb{Z}_p} \times \cdots \times {\mathbb{Z}_p} \to 1$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${G^\prime } \cong {\mathbb{Z}_p},\,\,m \ge 1$$\end{document}. Then V(FpG)≅V(FpH)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V({\mathbb{F}_p}G) \cong V({\mathbb{F}_p}H)$$\end{document} if and only if G ≅ H. Balogh and Bovdi only solved the isomorphism problem when p is odd. In this paper, the case p = 2 is determined.
机构:
Univ St Andrews, Sch Comp Sci, Jack Cole Bldg, St Andrews KY16 9SX, Fife, ScotlandUniv St Andrews, Sch Comp Sci, Jack Cole Bldg, St Andrews KY16 9SX, Fife, Scotland
Konovalov, Alexander
Krivokhata, Anastasiya
论文数: 0引用数: 0
h-index: 0
机构:
Zaporozhye Natl Univ, Dept Math, UA-69063 Zaporozhe, UkraineUniv St Andrews, Sch Comp Sci, Jack Cole Bldg, St Andrews KY16 9SX, Fife, Scotland
Krivokhata, Anastasiya
ACTA SCIENTIARUM MATHEMATICARUM,
2007,
73
(1-2):
: 53
-
59