The Isomorphism Problem of Normalized Unit Groups of Group Algebras of a Class of Finite 2-groups

被引:0
|
作者
Yu Lei Wang
He Guo Liu
机构
[1] He’nan University of Technology,Department of Mathematics
[2] Hainan University,Department of Mathematics
关键词
isomorphism problem; normalized unit; Frattini subgroup; finite 2-group; 20C05; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a prime and Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} be a finite field of p elements. Let FpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}G$$\end{document} denote the group algebra of the finite p-group G over the field Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}$$\end{document} and V(FpG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V({\mathbb{F}_p}G)$$\end{document} denote the group of normalized units in FpG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_p}G$$\end{document}. Suppose that G and H are finite p-groups given by a central extension of the form 1→ℤpm→G→ℤp×⋯×ℤp→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \to {\mathbb{Z}_{{p^m}}} \to G \to {\mathbb{Z}_p} \times \cdots \times {\mathbb{Z}_p} \to 1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G^\prime } \cong {\mathbb{Z}_p},\,\,m \ge 1$$\end{document}. Then V(FpG)≅V(FpH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V({\mathbb{F}_p}G) \cong V({\mathbb{F}_p}H)$$\end{document} if and only if G ≅ H. Balogh and Bovdi only solved the isomorphism problem when p is odd. In this paper, the case p = 2 is determined.
引用
收藏
页码:2275 / 2282
页数:7
相关论文
共 50 条