Heuristic and genetic algorithms for solving survivability problem in the design of last mile communication networks

被引:0
|
作者
Huynh Thi Thanh Binh
Nguyen Thai Duong
机构
[1] Hanoi University of Science and Technology,School of Information and Communication Technology
来源
Soft Computing | 2015年 / 19卷
关键词
Survivable network design; Fiber optic network; Shortest paths; Edge-disjoint paths; Heuristic algorithm ; Genetic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected, undirected and weighted graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a set of infrastructure nodes J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} and a set of customers C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} include two customer types whereby customers C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{1}$$\end{document} require a single connection (type-1) and customers C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{2}$$\end{document} need to be redundantly connected (type-2). Survivable network design problem (SNDP) seeks a sub-graph of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with the smallest weight in which all customers are connected to infrastructure nodes. SNDP has applications in the design of the last mile of the real-world communication networks. SNDP is NP-hard so heuristic approaches are normally adopted to solve this problem, especially for large-scale networks. This paper proposes a new heuristic algorithm and a new genetic algorithm for solving SNDP. The proposed algorithms are experimented on real-world instances and random instances. Results of computational experiments show that the proposed heuristic algorithm is much more efficient than the other heuristics in running time, and the proposed genetic algorithm is much more efficient than the other heuristics in terms of minimizing the network cost.
引用
收藏
页码:2619 / 2632
页数:13
相关论文
共 50 条
  • [41] A Meta-heuristic based Multi-Agent Approach for Last Mile Delivery Problem
    Hasan, Maram
    Niyogi, Rajdeep
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS), VOL 1, 2020, : 498 - 505
  • [42] EXACT AND HEURISTIC ALGORITHMS FOR THE OPTIMUM COMMUNICATION SPANNING TREE PROBLEM
    AHUJA, RK
    MURTY, VVS
    TRANSPORTATION SCIENCE, 1987, 21 (03) : 163 - 170
  • [43] Solving the Last Mile Problem for Energy Self-forming Nano-grids
    Bacque, Ben
    Gachovska, Tanya Kirilova
    Orr, Ray
    Radimov, Nikolay
    Li, David King
    Poshtkouhi, Shahab
    Trescases, Olivier
    2015 IEEE CANADA INTERNATIONAL HUMANITARIAN TECHNOLOGY CONFERENCE (IHTC2015), 2015,
  • [44] Solving the constrained p-center problem using heuristic algorithms
    Davoodi, Mansoor
    Mohades, Ali
    Rezaei, Jafar
    APPLIED SOFT COMPUTING, 2011, 11 (04) : 3321 - 3328
  • [45] Solving the "last mile" problem in overdose prevention: Lessons from the HEALing Communities Study
    Walters, Scott T.
    Drainoni, Mari-Lynn
    Oga, Emmanuel A.
    Byard, Jeremy
    Chandler, Redonna K.
    DRUG AND ALCOHOL DEPENDENCE, 2024, 264
  • [46] Comparison of Heuristic Algorithms to Solving Mesh Network Path Finding Problem
    Kubacki, Jacek
    Koszalka, Leszek
    Pozniak-Koszalka, Iwona
    Kasprzak, Andrzej
    FCST 2009: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY, 2009, : 388 - 392
  • [47] Exact and heuristic algorithms for solving the generalized minimum filter placement problem
    E. Chisonge Mofya
    J. Cole Smith
    Journal of Combinatorial Optimization, 2006, 12 : 231 - 256
  • [48] Exact and heuristic algorithms for solving the generalized minimum filter placement problem
    Mofya, E. Chisonge
    Smith, J. Cole
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2006, 12 (03) : 231 - 256
  • [49] New heuristic algorithms for solving the planar p-median problem
    Drezner, Zvi
    Brimberg, Jack
    Mladenovic, Nenad
    Salhi, Said
    COMPUTERS & OPERATIONS RESEARCH, 2015, 62 : 296 - 304
  • [50] Heuristic Algorithms for Solving of the Tool Routing Problem for CNC Cutting Machines
    Chentsov, P. A.
    Petunin, A. A.
    Sesekin, A. N.
    Shipacheva, E. N.
    Sholohov, A. E.
    41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15), 2015, 1690