Heuristic and genetic algorithms for solving survivability problem in the design of last mile communication networks

被引:0
|
作者
Huynh Thi Thanh Binh
Nguyen Thai Duong
机构
[1] Hanoi University of Science and Technology,School of Information and Communication Technology
来源
Soft Computing | 2015年 / 19卷
关键词
Survivable network design; Fiber optic network; Shortest paths; Edge-disjoint paths; Heuristic algorithm ; Genetic algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected, undirected and weighted graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document}, a set of infrastructure nodes J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document} and a set of customers C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} include two customer types whereby customers C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{1}$$\end{document} require a single connection (type-1) and customers C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{2}$$\end{document} need to be redundantly connected (type-2). Survivable network design problem (SNDP) seeks a sub-graph of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with the smallest weight in which all customers are connected to infrastructure nodes. SNDP has applications in the design of the last mile of the real-world communication networks. SNDP is NP-hard so heuristic approaches are normally adopted to solve this problem, especially for large-scale networks. This paper proposes a new heuristic algorithm and a new genetic algorithm for solving SNDP. The proposed algorithms are experimented on real-world instances and random instances. Results of computational experiments show that the proposed heuristic algorithm is much more efficient than the other heuristics in running time, and the proposed genetic algorithm is much more efficient than the other heuristics in terms of minimizing the network cost.
引用
收藏
页码:2619 / 2632
页数:13
相关论文
共 50 条
  • [31] GA-Apriori: Combining Apriori Heuristic and Genetic Algorithms for Solving the Frequent Itemsets Mining Problem
    Djenouri, Youcef
    Comuzzi, Marco
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2017, 2017, 10526 : 138 - 148
  • [32] Modeling of Broadband Power Line Communication in last-mile networks
    Joseph, Jonitha P.
    Pillai, Sakuntala S.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMNET), 2016, : 137 - 142
  • [33] Genetic Algorithm-Based Heuristic for Solving Target Coverage Problem in Wireless Sensor Networks
    Manju
    Singh, Deepti
    Chand, Satish
    Kumar, Bijendra
    ADVANCED COMPUTING AND COMMUNICATION TECHNOLOGIES, 2018, 562 : 257 - 264
  • [34] Genetic algorithms in solving graph partitioning problem
    Shazely, S
    Baraka, H
    Abdel-Wahab, A
    Kamal, H
    MULTIPLE APPROACHES TO INTELLIGENT SYSTEMS, PROCEEDINGS, 1999, 1611 : 155 - 164
  • [35] Genetic Algorithms for Solving Problems of Access Control Design and Reconfiguration in Computer Networks
    Saenko, Igor
    Kotenko, Igor
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2018, 18 (03)
  • [36] EFFICIENT HEURISTIC PROCEDURE FOR SOLVING LAYOUT DESIGN PROBLEM
    HITCHINGS, GG
    COTTAM, M
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 1976, 4 (02): : 205 - 214
  • [37] Heuristic algorithm for solving the discrete network design problem
    Chang, Chia-Juch
    Chang, Sheng Hsiung
    Transportation Planning and Technology, 1993, 17 (01)
  • [38] Design of a Secure Architecture for Last Mile Communication in Smart Grid Systems
    Menon, Divya M.
    Radhika, N.
    SMART GRID TECHNOLOGIES (ICSGT- 2015), 2015, 21 : 125 - 131
  • [39] A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
    Mahmoud, Tarek M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 21, 2007, 21 : 360 - 366
  • [40] Solving Base Station Subsystem Assignment Problem in Mobile Communication Networks Using Hybridized Heuristic Algorithm
    Krishnamurthi, Rajalakshmi
    Kumar, Prakash
    Bindu, Hima M.
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 93 : 334 - 342