Computation of optimal transport on discrete metric measure spaces

被引:0
|
作者
Matthias Erbar
Martin Rumpf
Bernhard Schmitzer
Stefan Simon
机构
[1] University of Bonn,Institute for Applied Mathematics
[2] University of Bonn,Institute for Numerical Simulation
[3] Technical University of Munich,Department of Mathematics
来源
Numerische Mathematik | 2020年 / 144卷
关键词
Optimal transport on graphs; Proximal splitting; Gradient flows; 65K10; 49M29; 49Q20; 60J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the numerical approximation of an analogue of the Wasserstein distance for optimal transport on graphs that is defined via a discrete modification of the Benamou–Brenier formula. This approach involves the logarithmic mean of measure densities on adjacent nodes of the graph. For this model a variational time discretization of the probability densities on graph nodes and the momenta on graph edges is proposed. A robust descent algorithm for the action functional is derived, which in particular uses a proximal splitting with an edgewise nonlinear projection on the convex subgraph of the logarithmic mean. Thereby, suitable chosen slack variables avoid a global coupling of probability densities on all graph nodes in the projection step. For the time discrete action functional Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence to the time continuous action is established. Numerical results for a selection of test cases show qualitative and quantitative properties of the optimal transport on graphs. Finally, we use our algorithm to implement a JKO scheme for the gradient flow of the entropy in discrete transportation distance, which is known to coincide with underlying Markov semigroup, and test our results against a classical backward Euler discretization of this discrete heat flow.
引用
收藏
页码:157 / 200
页数:43
相关论文
共 50 条
  • [31] Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure
    Frédéric de Gournay
    Jonas Kahn
    Léo Lebrat
    Numerische Mathematik, 2019, 141 : 429 - 453
  • [32] Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure
    de Gournay, Frederic
    Kahn, Jonas
    Lebrat, Leo
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 429 - 453
  • [33] Newtonian spaces: An extension of Sobolev spaces to metric measure spaces
    Shanmugalingam, N
    REVISTA MATEMATICA IBEROAMERICANA, 2000, 16 (02) : 243 - 279
  • [34] The Measure Preserving Isometry Groups of Metric Measure Spaces
    Guo, Yifan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [35] CHARACTERIZATIONS OF RECTIFIABLE METRIC MEASURE SPACES
    Bate, David
    Li, Sean
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (01): : 1 - 37
  • [36] Parabolic flow on metric measure spaces
    Gorka, Przemyslaw
    Kurek, Anna
    Lazarte, Enrique
    Prado, Humberto
    SEMIGROUP FORUM, 2014, 88 (01) : 129 - 144
  • [37] Conformal Transformation on Metric Measure Spaces
    Han, Bang-Xian
    POTENTIAL ANALYSIS, 2019, 51 (01) : 127 - 146
  • [38] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [39] Conformal Transformation on Metric Measure Spaces
    Bang-Xian Han
    Potential Analysis, 2019, 51 : 127 - 146
  • [40] CAMPANATO THEOREM ON METRIC MEASURE SPACES
    Gorka, Przemyslaw
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (02) : 523 - 528