Computation of optimal transport on discrete metric measure spaces

被引:0
|
作者
Matthias Erbar
Martin Rumpf
Bernhard Schmitzer
Stefan Simon
机构
[1] University of Bonn,Institute for Applied Mathematics
[2] University of Bonn,Institute for Numerical Simulation
[3] Technical University of Munich,Department of Mathematics
来源
Numerische Mathematik | 2020年 / 144卷
关键词
Optimal transport on graphs; Proximal splitting; Gradient flows; 65K10; 49M29; 49Q20; 60J27;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the numerical approximation of an analogue of the Wasserstein distance for optimal transport on graphs that is defined via a discrete modification of the Benamou–Brenier formula. This approach involves the logarithmic mean of measure densities on adjacent nodes of the graph. For this model a variational time discretization of the probability densities on graph nodes and the momenta on graph edges is proposed. A robust descent algorithm for the action functional is derived, which in particular uses a proximal splitting with an edgewise nonlinear projection on the convex subgraph of the logarithmic mean. Thereby, suitable chosen slack variables avoid a global coupling of probability densities on all graph nodes in the projection step. For the time discrete action functional Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence to the time continuous action is established. Numerical results for a selection of test cases show qualitative and quantitative properties of the optimal transport on graphs. Finally, we use our algorithm to implement a JKO scheme for the gradient flow of the entropy in discrete transportation distance, which is known to coincide with underlying Markov semigroup, and test our results against a classical backward Euler discretization of this discrete heat flow.
引用
收藏
页码:157 / 200
页数:43
相关论文
共 50 条
  • [21] Problems on discrete metric spaces
    Cameron, PJ
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (06) : 831 - 838
  • [22] On the measure contraction property of metric measure spaces
    Ohta, Shin-ichi
    COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (04) : 805 - 828
  • [23] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [24] Grand Sobolev Spaces on Metric Measure Spaces
    S. V. Pavlov
    Siberian Mathematical Journal, 2022, 63 : 956 - 966
  • [25] Interpolation of Morrey Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 598 - 608
  • [26] BMO SPACES FOR NONDOUBLING METRIC MEASURE SPACES
    Kosz, Dariusz
    PUBLICACIONS MATEMATIQUES, 2020, 64 (01) : 103 - 119
  • [27] Morrey Spaces for Nonhomogeneous Metric Measure Spaces
    Cao Yonghui
    Zhou Jiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] Grand Sobolev Spaces on Metric Measure Spaces
    Pavlov, S., V
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 956 - 966
  • [29] Approximate Discrete Optimal Transport Plan with Auxiliary Measure Method
    An, Dongsheng
    Lei, Na
    Gu, Xianfeng
    COMPUTER VISION, ECCV 2022, PT XXIII, 2022, 13683 : 619 - 635
  • [30] Bounded time computation on metric spaces and Banach spaces
    Schroeder, Matthias
    Steinberg, Florian
    2017 32ND ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2017,