Fate of turbid glacial inflows in a hydroelectric reservoir

被引:0
|
作者
Daniel M. Robb
Roger Pieters
Gregory A. Lawrence
机构
[1] University of British Columbia,Department of Civil Engineering
[2] University of British Columbia,Department of Earth, Ocean and Atmospheric Sciences
来源
关键词
Physical limnology; Horizontal dispersion; Turbidity; Glacial inflow; Particle settling; Light attenuation;
D O I
暂无
中图分类号
学科分类号
摘要
Turbidity from glacial meltwater limits light penetration with potential ecological consequences. Using profiles of temperature, conductivity, and turbidity, we examine the physical processes driving changes in the epilimnetic turbidity of Carpenter Reservoir, a long and narrow, glacier-fed reservoir in southwest British Columbia, Canada. Following the onset of permanent summer stratification, the relatively dense inflows plunged into the hypolimnion, and despite the high glacial load entering the reservoir, the epilimnion cleared due to particle settling. Using a one-dimensional (longitudinal) diffusion equation for a decaying substance to describe the variation in epilimnetic turbidity, we obtain two nondimensional parameters: the epilimnetic inflow parameter, I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document}, a measure of the turbidity flux into the epilimnion; and the dispersion parameter, D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}, a measure of longitudinal dispersion. In the case of Carpenter Reservoir: I≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}\ll 1$$\end{document}, indicating that turbidity declines over the summer; and D≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}\ll 1$$\end{document}, indicating a strong gradient in turbidity along the epilimnion. Using our theoretical formulation of epilimnetic turbidity variations in conjunction with monthly field surveys, we compute the particle settling velocity (∼0.25md-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim}{0.25}\,{\hbox {m}\,\hbox {d}^{-1}}$$\end{document}), the longitudinal dispersion coefficient (50–70 m2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {m}^{2}\,\hbox {s}^{-1}}$$\end{document}), and the flux of turbid water into the epilimnion (∼1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }1{\%}$$\end{document} of the total inflow). Our approach is applicable to other reservoirs and can be used to investigate changes in turbidity in response to changes in I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}.
引用
收藏
页码:1201 / 1225
页数:24
相关论文
共 50 条
  • [41] State-of-the-Art for Modelling Reservoir Inflows and Management Optimization
    Choong, Shi-Mei
    El-Shafie, A.
    WATER RESOURCES MANAGEMENT, 2015, 29 (04) : 1267 - 1282
  • [42] The lesson of the reservoir. Le Corbusier and hydroelectric uses
    Rio Vazquez, A. S.
    LE CORBUSIER: 50 ANOS DESPUES, 2015, : 1861 - 1875
  • [43] Dynamics of mercury in the plankton of a hydroelectric reservoir, Western Amazon
    Elisabete Lourdes do Nascimento
    Roberto Keidy Miyai
    João Paulo de Oliveira Gomes
    Ronado de Almeida
    Dario Pires de Carvalho
    Ângelo Gilberto Manzatto
    José Vicente Elias Bernardi
    Ene Glória da Silveira
    Wanderley Rodrigues Bastos
    Environmental Monitoring and Assessment, 2020, 192
  • [44] Interior-point method for reservoir operation with stochastic inflows
    Seifi, A
    Hipel, KW
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 2001, 127 (01): : 48 - 57
  • [45] Long term simulation of reservoir sedimentation with turbid underflows
    Petkovsek, G.
    RIVER SEDIMENTATION, 2017, : 209 - 209
  • [46] Organic carbon burial efficiency in a subtropical hydroelectric reservoir
    Mendonca, Raquel
    Kosten, Sarian
    Sobek, Sebastian
    Cardoso, Simone Jaqueline
    Figueiredo-Barros, Marcos Paulo
    Duque Estrada, Carlos Henrique
    Roland, Fabio
    BIOGEOSCIENCES, 2016, 13 (11) : 3331 - 3342
  • [47] Reservoir Advanced Process Control for Hydroelectric Power Production
    Zanoli, Silvia Maria
    Pepe, Crescenzo
    Astolfi, Giacomo
    Luzi, Francesco
    PROCESSES, 2023, 11 (02)
  • [48] Dynamics of mercury in the plankton of a hydroelectric reservoir, Western Amazon
    do Nascimento, Elisabete Lourdes
    Miyai, Roberto Keidy
    de Oliveira Gomes, Joao Paulo
    de Almeida, Ronado
    de Carvalho, Dario Pires
    Manzatto, Angelo Gilberto
    Bernardi, Jose Vicente Elias
    da Silveira, Ene Gloria
    Bastos, Wanderley Rodrigues
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (10)
  • [49] Sedimentation in the Gebidem hydroelectric reservoir and some of its consequences
    Rechsteiner, G
    SEDIMENTATION IN RESERVOIRS AND RELATED PROBLEMS IN WATER MAINS AND CANALS, INTERNATIONAL SYMPOSIUM, 1996, (142): : 137 - 148
  • [50] A RESERVOIR HYDROELECTRIC SYSTEM - EXACTLY AND APPROXIMATELY OPTIMAL POLICIES
    LAMOND, BF
    MONROE, SL
    SOBEL, MJ
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 81 (03) : 535 - 542