Fate of turbid glacial inflows in a hydroelectric reservoir

被引:0
|
作者
Daniel M. Robb
Roger Pieters
Gregory A. Lawrence
机构
[1] University of British Columbia,Department of Civil Engineering
[2] University of British Columbia,Department of Earth, Ocean and Atmospheric Sciences
来源
关键词
Physical limnology; Horizontal dispersion; Turbidity; Glacial inflow; Particle settling; Light attenuation;
D O I
暂无
中图分类号
学科分类号
摘要
Turbidity from glacial meltwater limits light penetration with potential ecological consequences. Using profiles of temperature, conductivity, and turbidity, we examine the physical processes driving changes in the epilimnetic turbidity of Carpenter Reservoir, a long and narrow, glacier-fed reservoir in southwest British Columbia, Canada. Following the onset of permanent summer stratification, the relatively dense inflows plunged into the hypolimnion, and despite the high glacial load entering the reservoir, the epilimnion cleared due to particle settling. Using a one-dimensional (longitudinal) diffusion equation for a decaying substance to describe the variation in epilimnetic turbidity, we obtain two nondimensional parameters: the epilimnetic inflow parameter, I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document}, a measure of the turbidity flux into the epilimnion; and the dispersion parameter, D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}, a measure of longitudinal dispersion. In the case of Carpenter Reservoir: I≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}\ll 1$$\end{document}, indicating that turbidity declines over the summer; and D≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}\ll 1$$\end{document}, indicating a strong gradient in turbidity along the epilimnion. Using our theoretical formulation of epilimnetic turbidity variations in conjunction with monthly field surveys, we compute the particle settling velocity (∼0.25md-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim}{0.25}\,{\hbox {m}\,\hbox {d}^{-1}}$$\end{document}), the longitudinal dispersion coefficient (50–70 m2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {m}^{2}\,\hbox {s}^{-1}}$$\end{document}), and the flux of turbid water into the epilimnion (∼1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }1{\%}$$\end{document} of the total inflow). Our approach is applicable to other reservoirs and can be used to investigate changes in turbidity in response to changes in I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}.
引用
收藏
页码:1201 / 1225
页数:24
相关论文
共 50 条
  • [21] RANGE ANALYSIS FOR RESERVOIR STORAGE WITH INDEPENDENT INFLOWS
    PHIEN, HN
    ARBHABHIRAMA, A
    SUTABUTR, P
    JOURNAL OF HYDROLOGY, 1980, 47 (1-2) : 53 - 64
  • [22] RESERVOIR STORAGE CAPACITY WITH GAMMA-INFLOWS
    PHIEN, HN
    JOURNAL OF HYDROLOGY, 1993, 146 (1-4) : 383 - 389
  • [23] Glacial reservoir identification and evaluation
    Xie, Jielai
    Zhang, Yuxiao
    Li, Zhengzhong
    Dai, Shuanghe
    Chen, Yuanzhong
    Guo, Zenghu
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2013, 48 (SUPPL.1): : 115 - 119
  • [24] MODELING THE FATE AND TRANSPORT OF PLUNGING INFLOWS TO ONONDAGA LAKE
    Owens, Emmet M.
    Effler, Steven W.
    O'Donnell, David M.
    Matthews, David A.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2014, 50 (01): : 205 - 218
  • [25] SEDIMENT VOLUME ACCUMULATED IN A RESERVOIR HAVING CORRELATED INFLOWS
    PHIEN, HN
    ARBHABHIRAMA, A
    SUTABUTR, P
    JOURNAL OF THE SCIENCE SOCIETY OF THAILAND, 1980, 6 (02): : 69 - 80
  • [26] Effects of riverine inflows on the climatology of a tropical Andean reservoir
    Posada-Bedoya, Andres
    Gomez-Giraldo, Andres
    Roman-Botero, Ricardo
    LIMNOLOGY AND OCEANOGRAPHY, 2021, 66 (09) : 3535 - 3551
  • [27] A HYBRID MODELLING FRAMEWORK FOR FORECASTING MONTHLY RESERVOIR INFLOWS
    Komornikova, Magda
    Szolgay, Jan
    Svetlikova, Danka
    Szoekeova, Danusa
    Jurcak, Stanislav
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2008, 56 (03) : 145 - 162
  • [28] Analytical Froude number solution for reservoir density inflows
    Li, Yuanya
    Zhang, Junhua
    Ma, Huaibao
    JOURNAL OF HYDRAULIC RESEARCH, 2011, 49 (05) : 693 - 696
  • [29] Solving reservoir management problems with serially correlated inflows
    Turgeon, A
    River Basin Management III, 2005, 83 : 247 - 255
  • [30] A seasonal forecasting procedure for reservoir inflows in Central Asia
    Dixon, Samuel G.
    Wilby, Robert L.
    RIVER RESEARCH AND APPLICATIONS, 2019, 35 (08) : 1141 - 1154