Fate of turbid glacial inflows in a hydroelectric reservoir

被引:0
|
作者
Daniel M. Robb
Roger Pieters
Gregory A. Lawrence
机构
[1] University of British Columbia,Department of Civil Engineering
[2] University of British Columbia,Department of Earth, Ocean and Atmospheric Sciences
来源
关键词
Physical limnology; Horizontal dispersion; Turbidity; Glacial inflow; Particle settling; Light attenuation;
D O I
暂无
中图分类号
学科分类号
摘要
Turbidity from glacial meltwater limits light penetration with potential ecological consequences. Using profiles of temperature, conductivity, and turbidity, we examine the physical processes driving changes in the epilimnetic turbidity of Carpenter Reservoir, a long and narrow, glacier-fed reservoir in southwest British Columbia, Canada. Following the onset of permanent summer stratification, the relatively dense inflows plunged into the hypolimnion, and despite the high glacial load entering the reservoir, the epilimnion cleared due to particle settling. Using a one-dimensional (longitudinal) diffusion equation for a decaying substance to describe the variation in epilimnetic turbidity, we obtain two nondimensional parameters: the epilimnetic inflow parameter, I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document}, a measure of the turbidity flux into the epilimnion; and the dispersion parameter, D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}, a measure of longitudinal dispersion. In the case of Carpenter Reservoir: I≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}\ll 1$$\end{document}, indicating that turbidity declines over the summer; and D≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}\ll 1$$\end{document}, indicating a strong gradient in turbidity along the epilimnion. Using our theoretical formulation of epilimnetic turbidity variations in conjunction with monthly field surveys, we compute the particle settling velocity (∼0.25md-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim}{0.25}\,{\hbox {m}\,\hbox {d}^{-1}}$$\end{document}), the longitudinal dispersion coefficient (50–70 m2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {m}^{2}\,\hbox {s}^{-1}}$$\end{document}), and the flux of turbid water into the epilimnion (∼1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sim }1{\%}$$\end{document} of the total inflow). Our approach is applicable to other reservoirs and can be used to investigate changes in turbidity in response to changes in I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}.
引用
收藏
页码:1201 / 1225
页数:24
相关论文
共 50 条
  • [1] Fate of turbid glacial inflows in a hydroelectric reservoir
    Robb, Daniel M.
    Pieters, Roger
    Lawrence, Gregory A.
    ENVIRONMENTAL FLUID MECHANICS, 2021, 21 (06) : 1201 - 1225
  • [2] External forcing by wind and turbid inflows on a deep glacial lake and implications for primary production
    Schallenberg, M
    James, M
    Hawes, I
    Howard-Williams, C
    NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 1999, 33 (02) : 311 - 331
  • [3] Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea
    Chung, S. W.
    Hipsey, M. R.
    Imberger, J.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2009, 24 (12) : 1467 - 1482
  • [4] Detection of long-term change in hydroelectric reservoir inflows: Bridging theory and practise
    Fleming, Sean W.
    Weber, Frank A.
    JOURNAL OF HYDROLOGY, 2012, 470 : 36 - 54
  • [5] Climate change impacts on reservoir inflows and subsequent hydroelectric power generation for cascaded hydropower plants
    Yu, Pao-Shan
    Yang, Tao-Chang
    Kuo, Chen-Min
    Chou, Jung-Chen
    Tseng, Hung-Wei
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2014, 59 (06): : 1196 - 1212
  • [6] Glacial melt inflows into Lake Geneva
    Hasegawa-Ishiguro, Naoko
    Okubo, Kenji
    INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY, VOL 30, PT 4, PROCEEDINGS, 2008, 30 : 643 - 646
  • [7] RESERVOIR SEDIMENTATION WITH CORRELATED INFLOWS
    PHIEN, HN
    JOURNAL OF HYDROLOGY, 1981, 53 (3-4) : 327 - 341
  • [8] LINEAR RESERVOIR WITH MARKOVIAN INFLOWS
    ANIS, AA
    LLOYD, EH
    SALEEM, SD
    WATER RESOURCES RESEARCH, 1979, 15 (06) : 1623 - 1627
  • [9] The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest
    Cross, Benjamin D.
    Kohfeld, Karen E.
    Bailey, Joseph
    Cooper, Andrew B.
    PLOS ONE, 2015, 10 (08):
  • [10] OPTICAL-PROPERTIES OF LAKE COLERIDGE - THE IMPACTS OF TURBID INFLOWS
    BIGGS, BJF
    DAVIESCOLLEY, RJ
    NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 1990, 24 (04) : 441 - 451