The CoMirror algorithm with random constraint sampling for convex semi-infinite programming

被引:0
|
作者
Bo Wei
William B. Haskell
Sixiang Zhao
机构
[1] National University of Singapore,Institute of Operations Research and Analytics
[2] Purdue University,Krannert School of Management
[3] Shanghai Jiao Tong University,Sino
来源
关键词
Semi-infinite programming; Random constraint sampling; Corporative stochastic approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\sqrt{N})$$\end{document} convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/N)$$\end{document}.
引用
收藏
页码:809 / 841
页数:32
相关论文
共 50 条
  • [41] On the convergence of a smoothed penalty algorithm for semi-infinite programming
    Qian Liu
    Changyu Wang
    Xinmin Yang
    Mathematical Methods of Operations Research, 2013, 78 : 203 - 220
  • [42] A parallel algorithm for global optimisation and semi-infinite programming
    Asprey, S
    Rustem, B
    Zakovic, S
    PROCEEDINGS OF THE 17TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2003, : 93 - 97
  • [43] AN UV-ALGORITHM FOR SEMI-INFINITE MULTIOBJECTIVE PROGRAMMING
    Li-Ping, Pang
    Jie, Shen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2006, 21 (1-2) : 307 - 313
  • [45] AnUV-algorithm for semi-infinite multiobjective programming
    Pang Li-Ping
    Shen Jie
    Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 307 - 313
  • [46] On the convergence of a smoothed penalty algorithm for semi-infinite programming
    Liu, Qian
    Wang, Changyu
    Yang, Xinmin
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2013, 78 (02) : 203 - 220
  • [47] CONVEX SEMI-INFINITE GAMES
    LOPEZ, MA
    VERCHER, E
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 50 (02) : 289 - 312
  • [48] Study of a special nonlinear problem arising in convex semi-infinite programming
    Kostyukova O.
    Tchemisova T.
    Yermalinskaya S.
    Journal of Mathematical Sciences, 2009, 161 (6) : 878 - 893
  • [49] An exchange method with refined subproblems for convex semi-infinite programming problems
    Okuno, Takayuki
    Hayashi, Shunsuke
    Yamashita, Nobuo
    Gomoto, Kensuke
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (06): : 1305 - 1324
  • [50] Locally Farkas-Minkowski systems in convex semi-infinite programming
    Fajardo, MD
    López, MA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (02) : 313 - 335