The CoMirror algorithm with random constraint sampling for convex semi-infinite programming

被引:0
|
作者
Bo Wei
William B. Haskell
Sixiang Zhao
机构
[1] National University of Singapore,Institute of Operations Research and Analytics
[2] Purdue University,Krannert School of Management
[3] Shanghai Jiao Tong University,Sino
来源
关键词
Semi-infinite programming; Random constraint sampling; Corporative stochastic approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\sqrt{N})$$\end{document} convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/N)$$\end{document}.
引用
收藏
页码:809 / 841
页数:32
相关论文
共 50 条
  • [31] A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods
    Pang, Li-Ping
    Wu, Qi
    Wang, Jin-He
    Wu, Qiong
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (01) : 125 - 153
  • [32] Semi-infinite programming
    Lopez, Marco
    Still, Georg
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 180 (02) : 491 - 518
  • [33] NEW CONSTRAINT QUALIFICATION AND OPTIMALITY FOR LINEAR SEMI-INFINITE PROGRAMMING
    Liu, Yanqun
    PACIFIC JOURNAL OF OPTIMIZATION, 2016, 12 (02): : 223 - 232
  • [34] Locally Farkas–Minkowski Systems in Convex Semi-Infinite Programming
    M. D. Fajardo
    M. A. López
    Journal of Optimization Theory and Applications, 1999, 103 : 313 - 335
  • [35] Convex semi-infinite programming algorithms with inexact separation oracles
    Oustry, Antoine
    Cerulli, Martina
    OPTIMIZATION LETTERS, 2024, : 437 - 462
  • [36] Proximal interior point method for convex semi-infinite programming
    Kaplan, A
    Tichatschke, R
    OPTIMIZATION METHODS & SOFTWARE, 2001, 15 (02): : 87 - 119
  • [37] OPTIMALITY CONDITIONS FOR CONVEX SEMI-INFINITE PROGRAMMING-PROBLEMS
    BENTAL, A
    KERZNER, L
    ZLOBEC, S
    NAVAL RESEARCH LOGISTICS, 1980, 27 (03) : 413 - 435
  • [38] Design of Synchrophasor Estimation Systems with Convex Semi-Infinite Programming
    Messina, Francisco
    Marchi, Pablo
    Rey Vega, Leonardo
    Galarza, Cecilia G.
    2016 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2016,
  • [39] A smoothing Levenberg–Marquardt algorithm for semi-infinite programming
    Ping Jin
    Chen Ling
    Huifei Shen
    Computational Optimization and Applications, 2015, 60 : 675 - 695
  • [40] An uv-algorithm for semi-infinite multiobjective programming
    Department of Applied Mathematics, Dalian University of Technology , Dalian, China
    不详
    不详
    不详
    J. Appl. Math. Comp., 2006, 1-2 (307-313):