The CoMirror algorithm with random constraint sampling for convex semi-infinite programming

被引:0
|
作者
Bo Wei
William B. Haskell
Sixiang Zhao
机构
[1] National University of Singapore,Institute of Operations Research and Analytics
[2] Purdue University,Krannert School of Management
[3] Shanghai Jiao Tong University,Sino
来源
关键词
Semi-infinite programming; Random constraint sampling; Corporative stochastic approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\sqrt{N})$$\end{document} convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to O(1/N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/N)$$\end{document}.
引用
收藏
页码:809 / 841
页数:32
相关论文
共 50 条
  • [1] The CoMirror algorithm with random constraint sampling for convex semi-infinite programming
    Bo, Wei
    Haskell, William B.
    Sixiang Zhao
    ANNALS OF OPERATIONS RESEARCH, 2020, 295 (02) : 809 - 841
  • [2] Correction to: The CoMirror algorithm with random constraint sampling for convex semi-infinite programming
    Bo Wei
    William B. Haskell
    Sixiang Zhao
    Annals of Operations Research, 2024, 332 : 1247 - 1247
  • [3] The CoMirror algorithm with random constraint sampling for convex semi-infinite programming (Sep, 10.1007/s10479-020-03766-7, 2020)
    Wei, Bo
    Haskell, William B.
    Zhao, Sixiang
    ANNALS OF OPERATIONS RESEARCH, 2024, 332 (1-3) : 1247 - 1247
  • [4] Comparative study of RPSALG algorithm for convex semi-infinite programming
    A. Auslender
    A. Ferrer
    M. A. Goberna
    M. A. López
    Computational Optimization and Applications, 2015, 60 : 59 - 87
  • [5] Comparative study of RPSALG algorithm for convex semi-infinite programming
    Auslender, A.
    Ferrer, A.
    Goberna, M. A.
    Lopez, M. A.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (01) : 59 - 87
  • [6] Modified gradient sampling algorithm for nonsmooth semi-infinite programming
    Shang, Tianyou
    Su, Ke
    Zhao, Bing
    Wei, Yanshu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4425 - 4450
  • [7] Modified gradient sampling algorithm for nonsmooth semi-infinite programming
    Tianyou Shang
    Ke Su
    Bing Zhao
    Yanshu Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4425 - 4450
  • [8] A CENTRAL CUTTING PLANE ALGORITHM FOR CONVEX SEMI-INFINITE PROGRAMMING PROBLEMS
    Kortanek, K. O.
    No, Hoon
    SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (04) : 901 - 918
  • [9] γ-ACTIVE CONSTRAINTS IN CONVEX SEMI-INFINITE PROGRAMMING
    Enrique Martinez-Legaz, Juan
    Ivanov Todorov, Maxim
    Armando Zetina, Carlos
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) : 1078 - 1094
  • [10] On duality theory of convex semi-infinite programming
    Shapiro, A
    OPTIMIZATION, 2005, 54 (06) : 535 - 543