Dimension Estimate of Polynomial Growth Holomorphic Functions

被引:0
|
作者
Gang Liu
机构
[1] Shanghai Key Laboratory of PMMP,School of Mathematical Sciences
[2] East China Normal University,undefined
关键词
Dimension estimate; Holomorphic functions; Gromov–Hausdorff convergence;
D O I
10.1007/s42543-021-00034-w
中图分类号
学科分类号
摘要
On a complete noncompact Kähler manifold Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{n}$$\end{document} (complex dimension) with nonnegative Ricci curvature and Euclidean volume growth, we prove that polynomial growth holomorphic functions of degree d has an dimension upper bound cdn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cd^{n}$$\end{document}, where c depends only on n and the asymptotic volume ratio. Note that the power is sharp.
引用
收藏
页码:187 / 202
页数:15
相关论文
共 50 条
  • [21] Sharp dimension estimates of holomorphic functions and rigidity
    Chen, BL
    Fu, XY
    Yin, L
    Zhu, XP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) : 1435 - 1454
  • [22] METRIZABILITY OF SPACES OF HOLOMORPHIC FUNCTIONS IN INFINITE DIMENSION
    HOGBENLEND, H
    BULLETIN DES SCIENCES MATHEMATIQUES, 1973, 97 (01): : 29 - 32
  • [23] Extension of solutions of convolution equations in spaces of holomorphic functions with polynomial growth in convex domains
    Abanin, A. V.
    Ishimura, R.
    Khoi, Le Hai
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (01): : 96 - 110
  • [24] BOUNDED HOLOMORPHIC FUNCTIONS OR THOSE WITH POLYNOMIAL GROWTH ON THE CURVE EX+EY=1
    DEMAILLY, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (01): : 39 - 40
  • [25] Linear continuous right inverse to convolution operator in spaces of holomorphic functions of polynomial growth
    Abanin A.V.
    Khoi L.H.
    Russian Mathematics, 2015, 59 (1) : 1 - 10
  • [26] Polynomial growth and asymptotic dimension
    Papasoglu, Panos
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 255 (02) : 985 - 1000
  • [27] Groups with a polynomial dimension growth
    Dranishnikov, A. N.
    GEOMETRIAE DEDICATA, 2006, 119 (01) : 1 - 15
  • [28] Polynomial growth and asymptotic dimension
    Panos Papasoglu
    Israel Journal of Mathematics, 2023, 255 : 985 - 1000
  • [29] Groups with a Polynomial Dimension Growth
    A. N. Dranishnikov
    Geometriae Dedicata, 2006, 119 : 1 - 15
  • [30] POLYNOMIAL INTERPOLATION OF HOLOMORPHIC-FUNCTIONS IN C AND CN
    BLOOM, T
    BOS, L
    CHRISTENSEN, C
    LEVENBERG, N
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1992, 22 (02) : 441 - 470