Dimension Estimate of Polynomial Growth Holomorphic Functions

被引:0
|
作者
Gang Liu
机构
[1] Shanghai Key Laboratory of PMMP,School of Mathematical Sciences
[2] East China Normal University,undefined
关键词
Dimension estimate; Holomorphic functions; Gromov–Hausdorff convergence;
D O I
10.1007/s42543-021-00034-w
中图分类号
学科分类号
摘要
On a complete noncompact Kähler manifold Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{n}$$\end{document} (complex dimension) with nonnegative Ricci curvature and Euclidean volume growth, we prove that polynomial growth holomorphic functions of degree d has an dimension upper bound cdn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cd^{n}$$\end{document}, where c depends only on n and the asymptotic volume ratio. Note that the power is sharp.
引用
收藏
页码:187 / 202
页数:15
相关论文
共 50 条