Einstein four-manifolds of three-nonnegative curvature operator

被引:0
|
作者
Peng Wu
机构
[1] Fudan University,Shanghai Center for Mathematical Sciences
来源
Mathematische Zeitschrift | 2019年 / 293卷
关键词
Einstein four-manifolds; -positive curvature operator; Positive sectional curvature; Positive isotropic curvature; Berger curvature decomposition; Weitzenböck formula; Refined Kato inequality; First eigenvalue of the Laplace operator; Primary 58E11; 53C25; 53C24; Secondary 58C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that Einstein four-manifolds of 3-positive curvature operator are isometric to (S4,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S^4, g_0)$$\end{document} or (CP2,gFS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {C}}P^2, g_{FS})$$\end{document}, and Einstein four-manifolds of 3-nonnegative curvature operator are isometric to (S4,g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S^4, g_0)$$\end{document}, (CP2,gFS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {C}}P^2, g_{FS})$$\end{document}, or (S2×S2,g0⊕g0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S^2\times S^2, g_0\oplus g_0)$$\end{document}, up to rescaling. We also prove that the first eigenvalue of the Laplace operator for Einstein four-manifolds with Ric=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Ric}=g$$\end{document} and nonnegative sectional curvature is bounded above by 43+413\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{3}+4^{\frac{1}{3}}$$\end{document}. The basic idea of the proofs is to construct an “integrated subharmonic function”, and the main ingredients of the proofs are curvature decompositions (in particular Berger decomposition), the Weitzenböck formula, and the refined Kato inequality. Along with the proofs, we also discover an alternative proof for the Weitzenböck formula using Berger decomposition, and an alternative proof for the refined Kato inequality using Derdziński’s argument.
引用
收藏
页码:1489 / 1511
页数:22
相关论文
共 50 条
  • [21] FOUR-MANIFOLDS WITHOUT EINSTEIN METRICS
    LeBrun, Claude
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (02) : 133 - 147
  • [22] Four-manifolds with positive isotropic curvature
    Chen, Bing-Long
    Huang, Xian-Tao
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1123 - 1149
  • [23] Four-manifolds with positive isotropic curvature
    Bing-Long Chen
    Xian-Tao Huang
    Frontiers of Mathematics in China, 2016, 11 : 1123 - 1149
  • [24] FOUR-MANIFOLDS OF PINCHED SECTIONAL CURVATURE
    Cao, Xiaodong
    Tran, Hung
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (01) : 17 - 38
  • [25] Twistors in conformally flat Einstein four-manifolds
    Esposito, G
    Pollifrone, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1996, 5 (05): : 481 - 493
  • [26] Non-degeneracy of Poincaré–Einstein Four-Manifolds Satisfying a Chiral Curvature Inequality
    Joel Fine
    The Journal of Geometric Analysis, 2023, 33
  • [27] THE CURVATURE HOMOGENEITY BOUND FOR LORENTZIAN FOUR-MANIFOLDS
    Milson, R.
    Pelavas, N.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (01) : 99 - 127
  • [28] Four-Manifolds, Curvature Bounds, and Convex Geometry
    LeBrun, Claude
    RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 119 - 152
  • [29] Dissolving four-manifolds and positive scalar curvature
    Hanke, B
    Kotschick, D
    Wehrheim, J
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 545 - 555
  • [30] Dissolving four-manifolds and positive scalar curvature
    B. Hanke
    D. Kotschick
    J. Wehrheim
    Mathematische Zeitschrift, 2003, 245 : 545 - 555