THE CURVATURE HOMOGENEITY BOUND FOR LORENTZIAN FOUR-MANIFOLDS

被引:12
|
作者
Milson, R. [1 ]
Pelavas, N. [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Curvature homogeneous; invariant classification; Karlhede bound; GRAVITATIONAL-WAVES; COSMOLOGICAL CONSTANT; RIEMANNIAN-MANIFOLDS; VACUUM SPACETIMES; CLASSIFICATION; GEOMETRIES; METRICS;
D O I
10.1142/S0219887809003424
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. The resulting metrics belong to the class of null electromagnetic radiation, type N solutions on an antide Sitter background. These. findings prove that the four-dimensional Lorentzian Singer number k(1,3) = 3, falsifying some recent conjectures [1]. We also prove that invariant classification for these proper CH2 solutions requires del((7)) R, and that these are the unique metrics requiring the seventh order.
引用
收藏
页码:99 / 127
页数:29
相关论文
共 50 条
  • [1] Killing superalgebras for Lorentzian four-manifolds
    Paul de Medeiros
    José Figueroa-O’Farrill
    Andrea Santi
    Journal of High Energy Physics, 2016
  • [2] Killing superalgebras for Lorentzian four-manifolds
    de Medeiros, Paul
    Figueroa-O'Farrill, Jose
    Santi, Andrea
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [3] FOUR-MANIFOLDS WITH POSITIVE CURVATURE
    Diogenes, R.
    Ribeiro, E.
    Rufino, E.
    GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (02) : 245 - 257
  • [4] Four-manifolds with positive isotropic curvature
    Chen, Bing-Long
    Huang, Xian-Tao
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1123 - 1149
  • [5] Four-manifolds with positive isotropic curvature
    Bing-Long Chen
    Xian-Tao Huang
    Frontiers of Mathematics in China, 2016, 11 : 1123 - 1149
  • [6] FOUR-MANIFOLDS OF PINCHED SECTIONAL CURVATURE
    Cao, Xiaodong
    Tran, Hung
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (01) : 17 - 38
  • [7] Curvature decompositions on Einstein four-manifolds
    Wu, Peng
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1739 - 1749
  • [8] Parallel spinors on globally hyperbolic Lorentzian four-manifolds
    Ángel Murcia
    C. S. Shahbazi
    Annals of Global Analysis and Geometry, 2022, 61 : 253 - 292
  • [9] Parallel spinors on globally hyperbolic Lorentzian four-manifolds
    Murcia, Angel
    Shahbazi, C. S.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (02) : 253 - 292
  • [10] Homogeneity of Lorentzian three-manifolds with recurrent curvature
    Garcia-Rio, Eduardo
    Gilkey, Peter B.
    Nikcevic, Stana
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (01) : 32 - 47