Highly sensitive nanoscale spin-torque diode

被引:0
|
作者
Miwa S. [1 ]
Ishibashi S. [1 ,2 ]
Tomita H. [1 ]
Nozaki T. [1 ,2 ]
Tamura E. [1 ]
Ando K. [1 ]
Mizuochi N. [1 ]
Saruya T. [1 ,3 ]
Kubota H. [2 ]
Yakushiji K. [2 ]
Taniguchi T. [2 ]
Imamura H. [2 ]
Fukushima A. [2 ]
Yuasa S. [2 ]
Suzuki Y. [1 ,2 ]
机构
[1] Graduate School of Engineering Science, Osaka University, Toyonaka
[2] National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba
[3] Process Development Center, Canon ANELVA Corporation, Kawasaki
来源
Yuasa, S. | 1600年 / Nature Publishing Group卷 / 13期
基金
日本学术振兴会;
关键词
Room temperature;
D O I
10.1038/nmat3778
中图分类号
学科分类号
摘要
Highly sensitive microwave devices that are operational at room temperature are important for high-speed multiplex telecommunications. Quantum devices such as superconducting bolometers possess high performance but work only at low temperature. On the other hand, semiconductor devices, although enabling high-speed operation at room temperature, have poor signal-to-noise ratios. In this regard, the demonstration of a diode based on spin-torque-induced ferromagnetic resonance between nanomagnets represented a promising development, even though the rectification output was too small for applications (1.4 mV mW-1). Here we show that by applying d.c. bias currents to nanomagnets while precisely controlling their magnetization-potential profiles, a much greater radiofrequency detection sensitivity of 12,000 mV mW-1 is achievable at room temperature, exceeding that of semiconductor diode detectors (3,800 mV mW-1). Theoretical analysis reveals essential roles for nonlinear ferromagnetic resonance, which enhances the signal-to-noise ratio even at room temperature as the size of the magnets decreases. © 2014 Macmillan Publishers Limited.
引用
收藏
页码:50 / 56
页数:6
相关论文
共 50 条
  • [21] Field Characteristics of Spin-Torque Diode Sensitivity in the Presence of a Bias Current
    A. F. Popkov
    N. E. Kulagin
    G. D. Demin
    K. A. Zvezdin
    Semiconductors, 2018, 52 : 1909 - 1914
  • [22] Neural-like population coding based on spin-torque diode
    Tu, Huayao
    Zhang, Like
    Luo, Yanxiang
    Lv, Wenxing
    Lei, Ting
    Cai, Jialin
    Fang, Bin
    Finocchio, Giovanni
    Bian, Lifeng
    Li, Shuping
    Zhang, Baoshun
    Zeng, Zhongming
    APPLIED PHYSICS LETTERS, 2023, 122 (12)
  • [23] Quantum Oscillations of the Microwave Sensitivity of a Spin-Torque Diode in a Magnetic Nanobridge
    Demin, G. D.
    Popkov, A. F.
    JETP LETTERS, 2017, 106 (12) : 821 - 827
  • [24] Multi-frequency microwave detection based on a spin-torque diode
    Liu, Zhenhao
    Zhang, Like
    Liu, Shuhui
    Wang, Wei
    Jia, Zhiyan
    Fang, Bin
    Zeng, Zhongming
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (12)
  • [25] Field Characteristics of Spin-Torque Diode Sensitivity in the Presence of a Bias Current
    Popkov, A. F.
    Kulagin, N. E.
    Demin, G. D.
    Zvezdin, K. A.
    SEMICONDUCTORS, 2018, 52 (15) : 1909 - 1914
  • [26] Spin-torque transistor
    Bauer, GEW
    Brataas, A
    Tserkovnyak, Y
    van Wees, BJ
    APPLIED PHYSICS LETTERS, 2003, 82 (22) : 3928 - 3930
  • [27] Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect
    Tomasello, R.
    Carpentieri, M.
    Finocchio, G.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [28] Giant spin-torque diode sensitivity in the absence of bias magnetic field
    Bin Fang
    Mario Carpentieri
    Xiaojie Hao
    Hongwen Jiang
    Jordan A. Katine
    Ilya N. Krivorotov
    Berthold Ocker
    Juergen Langer
    Kang L. Wang
    Baoshun Zhang
    Bruno Azzerboni
    Pedram Khalili Amiri
    Giovanni Finocchio
    Zhongming Zeng
    Nature Communications, 7
  • [29] Bolometric Properties of a Spin-Torque Diode Based on a Magnetic Tunnel Junction
    Demin, G. D.
    Zvezdin, K. A.
    Popkov, A. F.
    ADVANCES IN CONDENSED MATTER PHYSICS, 2019, 2019
  • [30] Quantum Oscillations of the Microwave Sensitivity of a Spin-Torque Diode in a Magnetic Nanobridge
    G. D. Demin
    A. F. Popkov
    JETP Letters, 2017, 106 : 821 - 827