Staggered Finite Difference Schemes for Conservation Laws

被引:0
|
作者
Gabriella Puppo
Giovanni Russo
机构
[1] Politecnico di Torino,Dipartimento di Matematica
[2] Università di Catania,Dipartimento di Matematica ed Informatica
来源
关键词
Conservation laws; balance laws; finite difference schemes; high-order accuracy; central schemes;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we introduce new finite-difference shock-capturing central schemes on staggered grids. Staggered schemes may have better resolution of the corresponding unstaggered schemes of the same order. They are based on high-order nonoscillatory reconstruction (ENO or WENO), and a suitable ODE solver for the computation of the integral of the flux. Although they suffer from a more severe stability restriction, they do not require a numerical flux function. A comparison of the new schemes with high-order finite volume (on staggered and unstaggered grids) and high order unstaggered finite difference methods is reported.
引用
收藏
页码:403 / 418
页数:15
相关论文
共 50 条
  • [31] Novel High-Order Alternative Finite Difference Central WENO Schemes for Hyperbolic Conservation Laws
    Gao, Zhen
    Tang, Zi-Yu
    Wang, Bao-Shan
    Zhao, Ya-Ru
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (02)
  • [32] Error bounds of finite difference schemes for multi-dimensional scalar conservation laws with source terms
    Shen, W
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (01) : 77 - 89
  • [33] Compactness estimates for difference schemes for conservation laws with discontinuous flux
    Karlsen, Kenneth H.
    Towers, John D.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (06) : 3313 - 3353
  • [34] INVARIANT VARIATIONAL-DIFFERENCE SCHEMES AND CONSERVATION-LAWS
    KOROBITSYN, VA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (04): : 71 - 79
  • [35] FINITE-DIFFERENCE APPROXIMATION OF CONSERVATION-LAWS
    OSTAPENKO, VV
    DOKLADY AKADEMII NAUK SSSR, 1990, 313 (06): : 1348 - 1352
  • [36] SIMPLIFIED CONSERVATION LAWS FOR FINITE-DIFFERENCE COMPUTATIONS
    MASSON, B
    AIAA JOURNAL, 1972, 10 (08) : 1125 - &
  • [37] On the role of global conservation property for finite difference schemes
    Qin, Jiaxian
    Chen, Yaming
    Deng, Xiaogang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 440
  • [38] Fully adaptive multiresolution finite volume schemes for conservation laws
    Cohen, A
    Kaber, SM
    Müller, S
    Postel, M
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 183 - 225
  • [39] SEMI-CONSERVATIVE FINITE VOLUME SCHEMES FOR CONSERVATION LAWS
    Pidatella, Rosa Maria
    Puppo, Gabriella
    Russo, Giovanni
    Santagati, Pietro
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : B576 - B600
  • [40] Adaptive finite element relaxation schemes for hyperbolic conservation laws
    Arvanitis, C
    Katsaounis, T
    Makridakis, C
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 17 - 33