In this work, we introduce new finite-difference shock-capturing central schemes on staggered grids. Staggered schemes may have better resolution of the corresponding unstaggered schemes of the same order. They are based on high-order nonoscillatory reconstruction (ENO or WENO), and a suitable ODE solver for the computation of the integral of the flux. Although they suffer from a more severe stability restriction, they do not require a numerical flux function. A comparison of the new schemes with high-order finite volume (on staggered and unstaggered grids) and high order unstaggered finite difference methods is reported.