An efficient conservative splitting characteristic difference method for solving 2-d space-fractional advection–diffusion equations

被引:0
|
作者
Ning Wang
Xinxia Zhang
Zhongguo Zhou
Hao Pan
Yan Wang
机构
[1] Shandong Agricultural University,School of Information Science and Engineering
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Spatial-fractional; PPM; Characteristic difference method; Stability; Error estimate; 65A05; 47F05; 35A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop an efficient splitting characteristic difference method for solving 2-dimensional two-sided space-fractional advection–diffusion equation. The intermediate numerical solutions are first computed by the piecewise parabolic method (PPM) where x¯i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{x}_i$$\end{document} is solved by the explicit second-order Runge–Kutta scheme. Then, the interior solutions are computed by the splitting σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-implicit characteristic difference method. By some auxiliary lemmas, our scheme is proved stable in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. The error estimate is given and we prove our schemes are of second-order convergence in space. Numerical experiments are used to verify our theoretical analysis.
引用
收藏
相关论文
共 50 条
  • [21] An ADI Iteration Method for Solving Discretized Two-Dimensional Space-Fractional Diffusion Equations
    Ran, Yu-Hong
    Wu, Qian-Qian
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [22] Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    APPLIED NUMERICAL MATHEMATICS, 2020, 155 : 93 - 102
  • [23] An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations
    Dai, Pingfei
    Wu, Qingbiao
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
  • [24] Matrix splitting preconditioning based on sine transform for solving two-dimensional space-fractional diffusion equations
    Lu, Kang-Ya
    Miao, Cun-Qiang
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 835 - 856
  • [25] High Accuracy Spectral Method for the Space-Fractional Diffusion Equations
    Zhai, Shuying
    Gui, Dongwei
    Zhao, Jianping
    Feng, Xinlong
    JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (03): : 274 - 286
  • [26] Stability and convergence of finite difference method for two-sided space-fractional diffusion equations
    She, Zi-Hang
    Qu, Hai-Dong
    Liu, Xuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 89 : 78 - 86
  • [27] A collocation method of lines for two-sided space-fractional advection-diffusion equations with variable coefficients
    Almoaeet, Mohammed K.
    Shamsi, Mostafa
    Khosravian-Arab, Hassan
    Torres, Delfim F. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) : 3465 - 3480
  • [28] A SPECTRAL LEGENDRE-GAUSS-LOBATTO COLLOCATION METHOD FOR A SPACE-FRACTIONAL ADVECTION DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS
    Bhrawy, A. H.
    Baleanu, D.
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (02) : 219 - 233
  • [29] Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method
    Zheng, Guang-Hui
    Zhang, Quan-Guo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 148 : 37 - 47
  • [30] An efficient Chebyshev-tau method for solving the space fractional diffusion equations
    Ren, Rong-fen
    Li, Hou-biao
    Jiang, Wei
    Song, Ming-yan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 259 - 267