An efficient conservative splitting characteristic difference method for solving 2-d space-fractional advection–diffusion equations

被引:0
|
作者
Ning Wang
Xinxia Zhang
Zhongguo Zhou
Hao Pan
Yan Wang
机构
[1] Shandong Agricultural University,School of Information Science and Engineering
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Spatial-fractional; PPM; Characteristic difference method; Stability; Error estimate; 65A05; 47F05; 35A05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop an efficient splitting characteristic difference method for solving 2-dimensional two-sided space-fractional advection–diffusion equation. The intermediate numerical solutions are first computed by the piecewise parabolic method (PPM) where x¯i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{x}_i$$\end{document} is solved by the explicit second-order Runge–Kutta scheme. Then, the interior solutions are computed by the splitting σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-implicit characteristic difference method. By some auxiliary lemmas, our scheme is proved stable in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm. The error estimate is given and we prove our schemes are of second-order convergence in space. Numerical experiments are used to verify our theoretical analysis.
引用
收藏
相关论文
共 50 条
  • [31] The upwind PPM scheme and analysis for solving two-sided space-fractional advection-diffusion equations in three dimension
    Zhou, Zhongguo
    Hang, Tongtong
    Pan, Hao
    Wang, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 150 : 70 - 86
  • [32] A finite difference scheme for semilinear space-fractional diffusion equations with time delay
    Hao, Zhaopeng
    Fan, Kai
    Cao, Wanrong
    Sun, Zhizhong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 238 - 254
  • [33] An efficient quadratic finite volume method for variable coefficient Riesz space-fractional diffusion equations
    Li, Fangli
    Fu, Hongfei
    Liu, Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2934 - 2951
  • [34] A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations
    Chen, Hao
    lv, Wen
    Zhang, Tongtong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 360 : 1 - 14
  • [35] Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions
    Jia, Jinhong
    Wang, Hong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 359 - 369
  • [36] Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations
    Dai, Ping-Fei
    Wu, Qing-Biao
    Zhu, Sheng-Feng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 699 - 715
  • [37] Discrete monotone method for space-fractional nonlinear reaction–diffusion equations
    Salvador Flores
    Jorge E. Macías-Díaz
    Ahmed S. Hendy
    Advances in Difference Equations, 2019
  • [38] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [39] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [40] Finite Integration Method via Chebyshev Polynomial Expansion for Solving 2-D Linear Time-Dependent and Linear Space-Fractional Differential Equations
    Boonklurb, Ratinan
    Duangpan, Ampol
    Saengsiritongchai, Arnont
    THAI JOURNAL OF MATHEMATICS, 2020, : 103 - 131