A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

被引:0
|
作者
Adam Ouorou
机构
[1] CORE-MCN,Orange Labs, Research & Development
来源
Mathematical Programming | 2009年 / 119卷
关键词
90C30; 90C25; 65K05; Nonsmooth optimization; Subgradient; Proximal bundle methods; Cutting plane methods; Convex programming;
D O I
暂无
中图分类号
学科分类号
摘要
An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga–Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga–Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga–Moore algorithm and two other well-known nonsmooth methods.
引用
收藏
相关论文
共 50 条
  • [41] Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization
    Karmitsa, Napsu
    Tanaka Filho, Mario
    Herskovits, Jose
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (03) : 528 - 549
  • [42] Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization
    Napsu Karmitsa
    Mario Tanaka Filho
    José Herskovits
    Journal of Optimization Theory and Applications, 2011, 148 : 528 - 549
  • [43] Globally convergent BFGS method for nonsmooth convex optimization
    Rauf, AI
    Fukushima, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (03) : 539 - 558
  • [44] A Nonconvex Proximal Bundle Method for Nonsmooth Constrained Optimization
    Shen, Jie
    Guo, Fang-Fang
    Xu, Na
    Complexity, 2024, 2024
  • [45] Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization
    Makela, Marko M.
    Karmitsa, Napsu
    Wilppu, Outi
    MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES, 2016, 40 : 191 - 204
  • [46] SYNTHESIS OF CUTTING AND SEPARATING PLANES IN A NONSMOOTH OPTIMIZATION METHOD
    Vorontsova, E. A.
    Nurminski, E. A.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2015, 51 (04) : 619 - 631
  • [47] On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization
    Hou, Liusheng
    Sun, Wenyu
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 227 - 235
  • [48] A Nonconvex Proximal Bundle Method for Nonsmooth Constrained Optimization
    Shen, Jie
    Guo, Fang-Fang
    Xu, Na
    COMPLEXITY, 2024, 2024
  • [49] The Proximal Augmented Lagrangian Method for Nonsmooth Composite Optimization
    Dhingra, Neil K.
    Khong, Sei Zhen
    Jovanovic, Mihailo R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) : 2861 - 2868
  • [50] Fast Proximal Gradient Methods for Nonsmooth Convex Optimization for Tomographic Image Reconstruction
    Elias S. Helou
    Marcelo V. W. Zibetti
    Gabor T. Herman
    Sensing and Imaging, 2020, 21