A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

被引:0
|
作者
Adam Ouorou
机构
[1] CORE-MCN,Orange Labs, Research & Development
来源
Mathematical Programming | 2009年 / 119卷
关键词
90C30; 90C25; 65K05; Nonsmooth optimization; Subgradient; Proximal bundle methods; Cutting plane methods; Convex programming;
D O I
暂无
中图分类号
学科分类号
摘要
An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga–Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga–Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga–Moore algorithm and two other well-known nonsmooth methods.
引用
收藏
相关论文
共 50 条
  • [21] Proximal alternating penalty algorithms for nonsmooth constrained convex optimization
    Quoc Tran-Dinh
    Computational Optimization and Applications, 2019, 72 : 1 - 43
  • [22] Proximal alternating penalty algorithms for nonsmooth constrained convex optimization
    Quoc Tran-Dinh
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (01) : 1 - 43
  • [23] A nonlinear analytic center cutting plane method for a class of convex programming problems
    Mokhtarian, FS
    Goffin, JL
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (04) : 1108 - 1131
  • [24] Barrier method in nonsmooth convex optimization without convex representation
    Dutta, Joydeep
    OPTIMIZATION LETTERS, 2015, 9 (06) : 1177 - 1185
  • [25] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377
  • [26] TRUNCATED CODIFFERENTIAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION
    Bagirov, A. M.
    Ganjehlou, A. Nazari
    Ugon, J.
    Tor, A. H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (03): : 483 - 496
  • [27] Barrier method in nonsmooth convex optimization without convex representation
    Joydeep Dutta
    Optimization Letters, 2015, 9 : 1177 - 1185
  • [28] A feasible directions method for nonsmooth convex optimization
    José Herskovits
    Wilhelm P. Freire
    Mario Tanaka Fo
    Alfredo Canelas
    Structural and Multidisciplinary Optimization, 2011, 44 : 363 - 377
  • [29] A trust region method for nonsmooth convex optimization
    Sagara, Nobuko
    Fukushima, Masao
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (02) : 171 - 180
  • [30] A Randomized Cutting Plane Scheme for Convex Optimization
    Dabbene, F.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 2008, : 105 - 110