Modelling of all-chalcogenide all-normal dispersion photonic crystal fiber for ultraflat mid-infrared supercontinuum generation

被引:0
|
作者
Abdelkader Medjouri
Djamel Abed
机构
[1] University of EL Oued,LEVRES Laboratory
[2] Université 8 mai 1945 Guelma,LABCAV Laboratory
来源
关键词
Photonic crystal fiber; arsenic-free chalcogenide glass; supercontinuum generation; mid-infrared photonics; coherent laser sources;
D O I
暂无
中图分类号
学科分类号
摘要
We design an all-solid Photonic Crystal Fiber (PCF) with all-normal dispersion profile to achieve broadband, ultraflat-top and coherent supercontinuum generation in the mid-infrared spectral region, by using sub-nanojoule laser pulses. Two environment friendly and thermally compatible chalcogenide glasses, namely Ge15Sb15Se70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Ge}}_{15} {\mathrm {Sb}}_{15}{\mathrm {Se}}_{70}$$\end{document} and Ge20Se80\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Ge}}_{20}{\mathrm {Se}}_{80}$$\end{document}, are used as background material and for solid rods, respectively. To the best of our knowledge, this is the first report of an all-solid PCF made of non-toxic ChG glasses for MIR SC generation. The finite difference method is employed to investigate and optimize the guiding linear and nonlinear properties. Simulations results indicate that high Kerr nonlinearity up to 2.21W-1m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.21 ~{\mathrm {~W}}^{-1} {\mathrm {~m}}^{-1}$$\end{document} at 3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 ~\upmu {\mathrm {m}}$$\end{document} and all-normal dispersion profile over the entire wavelength range are successfully achieved for a structure design with cladding pitch Λ=3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =3 ~\upmu {\mathrm {m}}$$\end{document} and solid rods diameter d=1.4μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.4 ~\upmu {\mathrm {m}}$$\end{document}. Furthermore, by pumping at 3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 ~\upmu {\mathrm {m}}$$\end{document} a 50fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50 ~{\mathrm {fs}}$$\end{document} duration optical pulses with a total energy of 900pJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$900 ~{\mathrm {pJ}}$$\end{document} into 10mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10 {\mathrm {~mm}}$$\end{document} PCF long, a bright, broadband and perfectly coherent supercontinuum spectrum with -5dB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-5 {\mathrm {~dB}}$$\end{document} bandwidth covering the wavelength range from 1.6μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6 ~\upmu {\mathrm {m}}$$\end{document} to 7μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7 ~\upmu {\mathrm {m}}$$\end{document}, is generated. The proposed all-solid PCF based SC laser source is found promising for various potential mid-infrared applications, covering the molecular fingerprint region, such as high resolution imaging of biological tissues, monitoring of greenhouse gases and materials characterization.
引用
收藏
相关论文
共 50 条
  • [41] Coherent mid-infrared supercontinuum spectrum using a step-index tellurite fiber with all-normal dispersion
    Saini, Than Singh
    Tong Hoang Tuan
    Xing, Luo
    Nguyen Phuoc Trung Hoa
    Suzuki, Takenobu
    Ohishi, Yasutake
    APPLIED PHYSICS EXPRESS, 2018, 11 (10)
  • [42] Design of all-normal dispersion photonic crystal fiber for high coherent broadband supercontinuum generation in the telecommunication window
    Cheng, Chunfu
    Ou, Yiwen
    Zhang, Jinye
    Lv, Qinghua
    Zhu, Jinrong
    Lv, Hui
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2015, 24 (03)
  • [43] Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile
    Guo, Yanchen
    Yuan, Jinhui
    Wang, Kuiru
    Wang, Haiyun
    Cheng, Yujun
    Zhou, Xian
    Yan, Binbin
    Sang, Xinzhu
    Yu, Chongxiu
    OPTICS COMMUNICATIONS, 2021, 481
  • [44] Design of all-normal dispersion based on multimaterial photonic crystal fiber in IR region for broadband supercontinuum generation
    Maji, Partha Sona
    Chaudhuri, Partha Roy
    APPLIED OPTICS, 2015, 54 (13) : 4042 - 4048
  • [45] Numerical Study on the Supercontinuum Generation in an Active Highly Nonlinear Photonic Crystal Fiber With Flattened All-Normal Dispersion
    Kwon, Youngchul
    Park, Kyoungyoon
    Hong, Seungsoo
    Jeong, Yoonchan
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2017, 53 (05)
  • [46] Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550 nm
    Siwicki, Bartlomiej
    Klimczak, Mariusz
    Stepien, Ryszard
    Buczynski, Ryszard
    OPTICAL FIBER TECHNOLOGY, 2015, 25 : 64 - 71
  • [47] Supercontinuum generation in a photonic crystal fiber tapered to normal dispersion for all wavelengths
    Falk, P
    Frosz, M
    Bang, O
    Andersen, PE
    Bjarklev, A
    Thrane, L
    17TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, PTS 1 AND 2, 2005, 5855 : 318 - 321
  • [48] Low-noise supercontinuum generation in chiral all-normal dispersion photonic crystal fibers
    Lippl, Markus
    Frosz, Michael H.
    Joly, Nicolas Y.
    OPTICS LETTERS, 2023, 48 (20) : 5297 - 5300
  • [49] Effect of initial frequency chirp on the supercontinuum generation in all-normal dispersion photonic crystal fibers
    Cheng, Chunfu
    Wang, Youqing
    Lv, Qinghua
    PHOTONICS AND OPTOELECTRONICS MEETINGS (POEM) 2011: OPTICAL COMMUNICATION SYSTEMS AND NETWORKING, 2012, 8331
  • [50] Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid-infrared-region supercontinuum generation
    Karim, M. R.
    Ahmad, H.
    Rahman, B. M. A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (02) : 266 - 275