Modelling of all-chalcogenide all-normal dispersion photonic crystal fiber for ultraflat mid-infrared supercontinuum generation

被引:0
|
作者
Abdelkader Medjouri
Djamel Abed
机构
[1] University of EL Oued,LEVRES Laboratory
[2] Université 8 mai 1945 Guelma,LABCAV Laboratory
来源
关键词
Photonic crystal fiber; arsenic-free chalcogenide glass; supercontinuum generation; mid-infrared photonics; coherent laser sources;
D O I
暂无
中图分类号
学科分类号
摘要
We design an all-solid Photonic Crystal Fiber (PCF) with all-normal dispersion profile to achieve broadband, ultraflat-top and coherent supercontinuum generation in the mid-infrared spectral region, by using sub-nanojoule laser pulses. Two environment friendly and thermally compatible chalcogenide glasses, namely Ge15Sb15Se70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Ge}}_{15} {\mathrm {Sb}}_{15}{\mathrm {Se}}_{70}$$\end{document} and Ge20Se80\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Ge}}_{20}{\mathrm {Se}}_{80}$$\end{document}, are used as background material and for solid rods, respectively. To the best of our knowledge, this is the first report of an all-solid PCF made of non-toxic ChG glasses for MIR SC generation. The finite difference method is employed to investigate and optimize the guiding linear and nonlinear properties. Simulations results indicate that high Kerr nonlinearity up to 2.21W-1m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.21 ~{\mathrm {~W}}^{-1} {\mathrm {~m}}^{-1}$$\end{document} at 3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 ~\upmu {\mathrm {m}}$$\end{document} and all-normal dispersion profile over the entire wavelength range are successfully achieved for a structure design with cladding pitch Λ=3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =3 ~\upmu {\mathrm {m}}$$\end{document} and solid rods diameter d=1.4μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.4 ~\upmu {\mathrm {m}}$$\end{document}. Furthermore, by pumping at 3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 ~\upmu {\mathrm {m}}$$\end{document} a 50fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50 ~{\mathrm {fs}}$$\end{document} duration optical pulses with a total energy of 900pJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$900 ~{\mathrm {pJ}}$$\end{document} into 10mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10 {\mathrm {~mm}}$$\end{document} PCF long, a bright, broadband and perfectly coherent supercontinuum spectrum with -5dB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-5 {\mathrm {~dB}}$$\end{document} bandwidth covering the wavelength range from 1.6μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6 ~\upmu {\mathrm {m}}$$\end{document} to 7μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7 ~\upmu {\mathrm {m}}$$\end{document}, is generated. The proposed all-solid PCF based SC laser source is found promising for various potential mid-infrared applications, covering the molecular fingerprint region, such as high resolution imaging of biological tissues, monitoring of greenhouse gases and materials characterization.
引用
收藏
相关论文
共 50 条
  • [31] BROADBAND SUPERCONTINUUM GENERATION IN ALL-NORMAL DISPERSION CHALCOGENIDE MICROWIRES
    Al-Kadry, Alaa
    Li, Lizhu
    North, Thibault
    Rochette, Martin
    El-Amraoui, Mohammed
    Messaddeq, Younes
    2015 PHOTONICS NORTH, 2015,
  • [32] Mid-infrared broadband ultraflat-top supercontinuum generation in dispersion engineered Ge-Sb-Se chalcogenide photonic crystal fiber
    Medjouri, Abdelkader
    Abed, Djamel
    OPTICAL MATERIALS, 2019, 97
  • [33] Step-index fluoride fibers with all-normal dispersion for coherent mid-infrared supercontinuum generation
    Li, Yu
    Wang, Longfei
    Liao, Meisong
    Liu, YinYao
    Li, Xia
    Bi, Wanjun
    Yu, Fei
    Zhang, Long
    Jiang, Yiguang
    Wang, Zaiyang
    Zhang, Longfei
    Yuan, Chengfeng
    Hu, Lili
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (11) : 2972 - 2980
  • [34] Demonstration of Mid-IR Supercontinuum Generation using All-Normal Dispersion Engineered Tapered Chalcogenide Fiber
    Saini, Than Singh
    Nguyen Phuoc Trung Hoa
    Luo, Xing
    Tong Hoang Tuan
    Suzuki, Takenobu
    Ohishi, Yasutake
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS AND DEVICES XIX, 2020, 11264
  • [35] Mid-infrared supercontinuum generation in dispersion-engineered highly nonlinear chalcogenide photonic crystal fiber
    Li, Jingling
    Zhao, Feng
    Hui, Zhanqiang
    MODERN PHYSICS LETTERS B, 2019, 33 (19):
  • [36] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
    Han, Jie
    Chang, Sheng-Dong
    Lyu, Yan-Jia
    Liu, Yong
    CHINESE PHYSICS B, 2019, 28 (10)
  • [37] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
    韩杰
    常圣东
    吕彦佳
    刘永
    Chinese Physics B, 2019, (10) : 342 - 348
  • [38] Polarized Supercontinuum Generation in CS2-Core All-Normal Dispersion Photonic Crystal Fiber
    Wang, Chao
    Lin, Kai
    Cao, Suqun
    Feng, Guoying
    Wang, Jun
    Abdalla, Ahmed N.
    IEEE PHOTONICS JOURNAL, 2022, 14 (06):
  • [39] Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride
    Van Thuy Hoang
    Kasztelanic, Rafal
    Filipkowski, Adam
    Stepniewski, Grzegorz
    Pysz, Dariusz
    Klimczak, Mariusz
    Ertman, Slawomir
    Van Cao Long
    Wolinski, Tomasz R.
    Trippenbach, Marek
    Khoa Dinh Xuan
    Smietana, Mateusz
    Buczynski, Ryszard
    OPTICAL MATERIALS EXPRESS, 2019, 9 (05) : 2264 - 2278
  • [40] Supercontinuum generation based on all normal dispersion photonic crystal fiber
    Liu Shuang-Long
    Chen Dan-Ni
    Liu Wei
    Niu Han-Ben
    ACTA PHYSICA SINICA, 2013, 62 (18)