On fractional diffusion equation with noise perturbation

被引:0
|
作者
C. S. Sridevi
Mabel L. Rajendran
M. Suvinthra
机构
[1] Bharathiar University,Department of Applied Mathematics
[2] Queens University Belfast,School of Mathematics and Physics
关键词
Stochastic fractional differential equations; Existence of solutions; Time-fractional PDE; Diffusion equation; 35A01; 35A02; 35D30; 35R11; 60H15;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic time-fractional diffusion equation can be accounted for a logical description of models with subdiffusion. This work is dedicated to the study of existence and uniqueness of the solution of stochastic time-fractional diffusion equation perturbed with a nonlinear source term. The method of Faedo–Galerkin approximations is employed in order to arrive at the estimate and to establish existence of solution by assuming that the noise coefficient and the nonlinear source term satisfy the required assumptions like Lipschitz continuity and linear growth condition.
引用
收藏
页码:98 / 106
页数:8
相关论文
共 50 条
  • [41] A NONLINEAR SCHRODINGER EQUATION WITH FRACTIONAL NOISE
    Deya, Aurelien
    Schaeffer, Nicolas
    Thomann, Laurent
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (06) : 4375 - 4422
  • [42] Similarity Solution for Fractional Diffusion Equation
    Duan, Jun-Sheng
    Guo, Ai-Ping
    Yun, Wen-Zai
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [43] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [44] A fractional diffusion equation with sink term
    dos Santos, M. A. F.
    INDIAN JOURNAL OF PHYSICS, 2020, 94 (07) : 1123 - 1133
  • [45] Identification of the diffusion coefficient in a time fractional diffusion equation
    Shayegan, Amir Hossein Salehi
    Zakeri, Ali
    Bodaghi, Soheila
    Heshmati, M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 299 - 306
  • [46] Inverse problem for fractional diffusion equation
    Vu Kim Tuan
    Fractional Calculus and Applied Analysis, 2011, 14 : 31 - 55
  • [47] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [48] CTRW pathways to the fractional diffusion equation
    Barkai, E
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 13 - 27
  • [49] Solution of a modified fractional diffusion equation
    Langlands, TAM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 (136-144) : 136 - 144
  • [50] ON A FRACTIONAL DIFFUSION EQUATION WITH MOVING CONTROL
    Micu, Sorin
    Nita, Constantin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (02) : 871 - 889