On fractional diffusion equation with noise perturbation

被引:0
|
作者
C. S. Sridevi
Mabel L. Rajendran
M. Suvinthra
机构
[1] Bharathiar University,Department of Applied Mathematics
[2] Queens University Belfast,School of Mathematics and Physics
关键词
Stochastic fractional differential equations; Existence of solutions; Time-fractional PDE; Diffusion equation; 35A01; 35A02; 35D30; 35R11; 60H15;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic time-fractional diffusion equation can be accounted for a logical description of models with subdiffusion. This work is dedicated to the study of existence and uniqueness of the solution of stochastic time-fractional diffusion equation perturbed with a nonlinear source term. The method of Faedo–Galerkin approximations is employed in order to arrive at the estimate and to establish existence of solution by assuming that the noise coefficient and the nonlinear source term satisfy the required assumptions like Lipschitz continuity and linear growth condition.
引用
收藏
页码:98 / 106
页数:8
相关论文
共 50 条
  • [21] Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    REVISTA MEXICANA DE FISICA, 2019, 65 (01) : 82 - 88
  • [22] Some properties of the fractional equation of continuity and the fractional diffusion equation
    Fukunaga, Masataka
    Flow Dynamics, 2006, 832 : 534 - 537
  • [23] Global and non-global solutions of a fractional reaction-diffusion equation perturbed by a fractional noise
    Dozzi, Marco
    Kolkovska, Ekaterina Todorova
    Lopez-Mimbela, Jose Alfredo
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (06) : 959 - 978
  • [24] NUMERICAL ANALYSIS FOR STOCHASTIC TIME-SPACE FRACTIONAL DIFFUSION EQUATION DRIVEN BY FRACTIONAL GAUSSIAN NOISE
    Nie, Daxin
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023,
  • [25] Fractional diffusion equation with new fractional operator
    Sene, Ndolane
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2921 - 2926
  • [26] On a fractional reaction–diffusion equation
    Bruno de Andrade
    Arlúcio Viana
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [27] Discrete fractional diffusion equation
    Guo-Cheng Wu
    Dumitru Baleanu
    Sheng-Da Zeng
    Zhen-Guo Deng
    Nonlinear Dynamics, 2015, 80 : 281 - 286
  • [28] Anisotropic fractional diffusion equation
    Mendes, GA
    Lenzi, EK
    Mendes, RS
    da Silva, LR
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 346 (3-4) : 271 - 283
  • [29] Discrete fractional diffusion equation
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    Deng, Zhen-Guo
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 281 - 286
  • [30] PERTURBATION SOLUTION FOR A NONLINEAR DIFFUSION EQUATION
    LIU, PLF
    WATER RESOURCES RESEARCH, 1976, 12 (06) : 1235 - 1240