Rigorous high-precision computation of the Hurwitz zeta function and its derivatives

被引:0
|
作者
Fredrik Johansson
机构
[1] Johannes Kepler University,RISC
来源
Numerical Algorithms | 2015年 / 69卷
关键词
Hurwitz zeta function; Riemann zeta function; Arbitrary-precision arithmetic; Rigorous numerical evaluation; Fast polynomial arithmetic; Power series; 65D20; 68W30; 33F05; 11-04; 11M06; 11M35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta function ζ(s, a) for s,a∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s, a \in \mathbb {C}$\end{document}, along with an arbitrary number of derivatives with respect to s, to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implementation are discussed. We present new record computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open source implementation of the algorithms described in this paper.
引用
收藏
页码:253 / 270
页数:17
相关论文
共 50 条
  • [41] High-precision calculation of the light curve and its interpretation
    Abubekerov, M. K.
    Gostev, N. Yu
    ASTRONOMY & ASTROPHYSICS, 2020, 633
  • [42] High-precision frequency attenuation analysis and its application
    Xiao-Jun Xiong
    Xi-Lei He
    Yong Pu
    Zhen-Hua He
    Kai Lin
    Applied Geophysics, 2011, 8 : 337 - 343
  • [43] High-precision frequency attenuation analysis and its application
    Xiong Xiao-Jun
    He Xi-Lei
    Pu Yong
    He Zhen-Hua
    Lin Kai
    APPLIED GEOPHYSICS, 2011, 8 (04) : 337 - 343
  • [44] HIGH-PRECISION REPETIVIVE FIRING IN INSECT OPTIC LOBE AND A HYPOTHESIS FOR ITS FUNCTION IN OBJECT LOCATION
    KUIPER, JW
    LEUTSCHE.JT
    NATURE, 1965, 206 (4989) : 1158 - &
  • [45] High-accurate method for evaluation of the Reimann zeta function, its derivatives and their complex zeros
    Kerimov, M.K.
    Skorokhodov, S.L.
    Doklady Akademii Nauk, 2003, 390 (04) : 439 - 443
  • [46] High-precision computation of the weak Galerkin methods for the fourth-order problem
    Burkardt, John
    Gunzburger, Max
    Zhao, Wenju
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 181 - 205
  • [47] High-precision and fast computation of Jacobi-Fourier moments for image description
    Camacho-Bello, C.
    Toxqui-Quit, C.
    Padilla-Vivanco, A.
    Báez-Rojas, J.J.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31 (01): : 124 - 134
  • [48] Introducing SummerTime: A package for high-precision computation of sums appearing in DRA method
    Lee, Roman N.
    Mingulov, Kirill T.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 203 : 255 - 267
  • [49] High-precision and fast computation of Jacobi-Fourier moments for image description
    Camacho-Bello, C.
    Toxqui-Quitl, C.
    Padilla-Vivanco, A.
    Baez-Rojas, J. J.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (01) : 124 - 134
  • [50] THE 2-CENTER DALITZ INTEGRAL - THEORY AND ALGORITHMS FOR HIGH-PRECISION COMPUTATION
    BELKIC, D
    TAYLOR, HS
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1986, 1 (04): : 351 - 361