Rigorous high-precision computation of the Hurwitz zeta function and its derivatives

被引:0
|
作者
Fredrik Johansson
机构
[1] Johannes Kepler University,RISC
来源
Numerical Algorithms | 2015年 / 69卷
关键词
Hurwitz zeta function; Riemann zeta function; Arbitrary-precision arithmetic; Rigorous numerical evaluation; Fast polynomial arithmetic; Power series; 65D20; 68W30; 33F05; 11-04; 11M06; 11M35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta function ζ(s, a) for s,a∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s, a \in \mathbb {C}$\end{document}, along with an arbitrary number of derivatives with respect to s, to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implementation are discussed. We present new record computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open source implementation of the algorithms described in this paper.
引用
收藏
页码:253 / 270
页数:17
相关论文
共 50 条
  • [31] Computation of a High-Precision GPS-Based Troposphere Product by the USNO
    Byram, Sharyl
    Hackman, Christine
    Tracey, Jeffrey
    PROCEEDINGS OF THE 24TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2011), 2011, : 572 - 578
  • [32] HIGH-PRECISION COMPUTATION OF SOLENOID MAGNETIC-FIELDS BY GARRETT METHODS
    RUSINOV, AI
    IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (04) : 2685 - 2688
  • [33] GPU Acceleration of High-Precision Homomorphic Computation Utilizing Redundant Representation
    Narisada, Shintaro
    Okada, Hiroki
    Fukushima, Kazuhide
    Kiyomoto, Shinsaku
    Nishide, Takashi
    PROCEEDINGS OF THE 11TH WORKSHOP ON ENCRYPTED COMPUTING & APPLIED HOMOMORPHIC CRYPTOGRAPHY, WAHC 2023, 2023, : 1 - 9
  • [34] Computation of high-precision mathematical constants in a combined cluster and grid environment
    Takahashi, D
    Sato, M
    Boku, T
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 454 - 461
  • [35] A MULTIPROCESSOR ARCHITECTURE USING MODULAR ARITHMETIC FOR VERY HIGH-PRECISION COMPUTATION
    WU, HM
    CA-DSP 89, VOLS 1 AND 2: 1989 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SIGNAL PROCESSING, 1989, : 541 - 546
  • [36] SINGULAR AND NEAR-SINGULAR INTEGRALS IN HIGH-PRECISION DERIVATIVE COMPUTATION
    OMERAGIC, D
    SILVESTER, PP
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1995, 14 (01) : 19 - 39
  • [37] A silicon retina calculating high-precision spatial and temporal derivatives
    Kameda, S
    Yagi, T
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 201 - 205
  • [38] High-precision Fourier analysis of sounds using signal derivatives
    Desainte-Catherine, M
    Marchand, S
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2000, 48 (7-8): : 654 - 667
  • [39] High-precision Fourier analysis of sounds using signal derivatives
    Desainte-Catherine, Myriam
    Marchand, Sylvain
    AES: Journal of the Audio Engineering Society, 2000, 48 (07): : 654 - 667
  • [40] High-precision pulsar timing and spin frequency second derivatives
    Liu, X. J.
    Bassa, C. G.
    Stappers, B. W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (02) : 2359 - 2367