Rigorous high-precision computation of the Hurwitz zeta function and its derivatives

被引:0
|
作者
Fredrik Johansson
机构
[1] Johannes Kepler University,RISC
来源
Numerical Algorithms | 2015年 / 69卷
关键词
Hurwitz zeta function; Riemann zeta function; Arbitrary-precision arithmetic; Rigorous numerical evaluation; Fast polynomial arithmetic; Power series; 65D20; 68W30; 33F05; 11-04; 11M06; 11M35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the use of the Euler-Maclaurin formula to numerically evaluate the Hurwitz zeta function ζ(s, a) for s,a∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s, a \in \mathbb {C}$\end{document}, along with an arbitrary number of derivatives with respect to s, to arbitrary precision with rigorous error bounds. Techniques that lead to a fast implementation are discussed. We present new record computations of Stieltjes constants, Keiper-Li coefficients and the first nontrivial zero of the Riemann zeta function, obtained using an open source implementation of the algorithms described in this paper.
引用
收藏
页码:253 / 270
页数:17
相关论文
共 50 条