Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space

被引:0
|
作者
Omar Benslimane
Ahmed Aberqi
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz
[2] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, National School of Applied Sciences Fez
关键词
Anisotropic elliptic equation; Entropy solution; Sobolev–Orlicz anisotropic spaces; Unbounded domain; MSC 35J47; MSC 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Our objective in this paper is to study a certain class of anisotropic elliptic equations with the second term, which is a low-order term and non-polynomial growth; described by an N-uplet of N-function satisfying the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{2}$$\end{document}-condition in the framework of anisotropic Orlicz spaces. We prove the existence and uniqueness of entropic solution for a source in the dual or in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}, without assuming any condition on the behaviour of the solutions when x tends towards infinity. Moreover, we are giving an example of an anisotropic elliptic equation that verifies all our demonstrated results.
引用
收藏
页码:1579 / 1608
页数:29
相关论文
共 50 条
  • [31] Multiplicity and Existence Results for a Nonlinear Elliptic Equation With Sobolev Exponent
    Bouchech, Zakaria
    Chtioui, Hichem
    ADVANCED NONLINEAR STUDIES, 2010, 10 (03) : 537 - 571
  • [32] EXISTENCE RESULTS FOR A NONLINEAR ELLIPTIC EQUATION WITH CRITICAL SOBOLEV EXPONENT
    Ben Ayed, Mohamed
    Chtioui, Hichem
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (01) : 1 - 18
  • [33] EXISTENCE OF A SOLUTION AND ITS NUMERICAL APPROXIMATION FOR A STRONGLY NONLINEAR COUPLED SYSTEM IN ANISOTROPIC ORLICZ-SOBOLEV SPACES
    Gallego, Francisco Ortegon
    Ouyahya, Hakima
    Rhoudaf, Mohamed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (84)
  • [34] The existence of strong solution for a nonlinear elliptic equation
    Li, Junyan
    Shen, Jieqiong
    SECOND INTERNATIONAL CONFERENCE ON PHYSICS, MATHEMATICS AND STATISTICS, 2019, 1324
  • [35] EXISTENCE AND UNIQUENESS OF SINGULAR SOLUTIONS FOR ELLIPTIC EQUATION ON THE HYPERBOLIC SPACE
    Wu, Yen-Lin
    Chen, Zhi-You
    Chern, Jann-Long
    Kabeya, Yoshitsugu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 949 - 960
  • [36] Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space
    Gwiazda, Piotr
    Skrzypczak, Iwona
    Zatorska-Goldstein, Anna
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (01) : 341 - 377
  • [37] Existence and uniqueness of radial solution for the elliptic equation system in an annulus
    Wang, Dan
    Li, Yongxiang
    AIMS MATHEMATICS, 2023, 8 (09): : 21929 - 21942
  • [38] Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Fang, Fei
    Tan, Zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 287 - 296
  • [39] Existence of a renormalized solutions for parabolic-elliptic system in anisotropic Orlicz-Sobolev spaces
    Ahakkoud, Y.
    Bennouna, J.
    Elmassoudi, M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (07) : 2475 - 2500
  • [40] Uniqueness of solution of Neumann problem for nonlinear elliptic equation
    Cianci, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 1196 - 1204