Existence and uniqueness of entropy solution of a nonlinear elliptic equation in anisotropic Sobolev–Orlicz space

被引:0
|
作者
Omar Benslimane
Ahmed Aberqi
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz
[2] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, National School of Applied Sciences Fez
关键词
Anisotropic elliptic equation; Entropy solution; Sobolev–Orlicz anisotropic spaces; Unbounded domain; MSC 35J47; MSC 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
Our objective in this paper is to study a certain class of anisotropic elliptic equations with the second term, which is a low-order term and non-polynomial growth; described by an N-uplet of N-function satisfying the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{2}$$\end{document}-condition in the framework of anisotropic Orlicz spaces. We prove the existence and uniqueness of entropic solution for a source in the dual or in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}, without assuming any condition on the behaviour of the solutions when x tends towards infinity. Moreover, we are giving an example of an anisotropic elliptic equation that verifies all our demonstrated results.
引用
收藏
页码:1579 / 1608
页数:29
相关论文
共 50 条
  • [21] Existence and uniqueness of solution for a singular elliptic differential equation
    Gu, Shanshan
    Yang, Bianxia
    Shao, Wenrui
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [22] Local existence and uniqueness of Euler equation in weighted Sobolev space
    Cheng, Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 1333 - 1344
  • [23] An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces
    Benkirane, A.
    El Vally, M. Sidi
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (01) : 57 - 75
  • [24] Eigenvalue problems for anisotropic elliptic equations: An Orlicz-Sobolev space setting
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3239 - 3253
  • [25] Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz–Sobolev Spaces
    H. Moussa
    F. Ortegón Gallego
    M. Rhoudaf
    Mediterranean Journal of Mathematics, 2020, 17
  • [26] Quasilinear elliptic problem in anisotropic Orlicz-Sobolev space on unbounded domain
    Wronski, Karol
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) : 147 - 161
  • [27] On the Existence and Uniqueness of a Solution of a Nonlinear Integral Equation
    M. V. Nikolaev
    A. A. Nikitin
    Doklady Mathematics, 2019, 100 : 485 - 487
  • [28] On the Existence and Uniqueness of a Solution of a Nonlinear Integral Equation
    Nikolaev, M. V.
    Nikitin, A. A.
    DOKLADY MATHEMATICS, 2019, 100 (02) : 485 - 487
  • [29] An existence result of entropy solutions to elliptic problems in generalized Orlicz-Sobolev spaces
    Bourahma, M.
    Benkirane, A.
    Bennouna, J.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 481 - 504
  • [30] Existence and uniqueness of solutions of some nonlinear equations in Orlicz spaces and weighted Sobolev spaces
    Aharouch, L.
    Benkirane, A.
    Bennouna, J.
    Touzani, A.
    RECENT DEVELOPMENTS IN NONLINEAR ANALYSIS, 2010, : 170 - +