Multifractal analysis of Lévy fields

被引:0
|
作者
Arnaud Durand
Stéphane Jaffard
机构
[1] UMR 8628,Laboratoire de Mathématiques
[2] Université Paris-Sud,Laboratoire d’Analyse et de Mathématiques Appliquées
[3] Université Paris-Est Créteil Val de Marne UMR 8050,undefined
来源
关键词
Lévy random fields; Multifractal analysis; Hausdorff measures and dimension; Sets with large intersection; Diophantine approximation; Ubiquity; Primary: 60G60; 60G51; Secondary: 60G17; 60D05; 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
We study the pointwise regularity properties of the Lévy fields introduced by T. Mori; these fields are the most natural generalization of Lévy processes to the multivariate setting. We determine their spectrum of singularities, and we show that their Hölder singularity sets satisfy a large intersection property in the sense of K. Falconer.
引用
收藏
页码:45 / 96
页数:51
相关论文
共 50 条
  • [31] 两指标Lévy过程的Lévy Markov性
    邹东雅
    数学物理学报, 1992, (02) : 176 - 181
  • [32] Multifractal vector optical fields
    Zhao, Meng-Dan
    Gao, Xu-Zhen
    Wang, Qiang
    Zhang, Guan-Lin
    Wang, Ke
    Dai, Fan
    Wang, Dan
    Li, Yongnan
    Tu, Chenghou
    Wang, Hui-Tian
    OPTICS EXPRESS, 2019, 27 (15) : 20608 - 20620
  • [33] Asymptotic analysis of Lévy-driven tandem queues
    Pascal Lieshout
    Michel Mandjes
    Queueing Systems, 2008, 60 : 203 - 226
  • [34] Analysis of a predator-prey model with Lévy jumps
    Min Zhu
    Junping Li
    Advances in Difference Equations, 2016
  • [35] Transition Density Estimates for a Class of Lévy and Lévy-Type Processes
    Viktorya Knopova
    René L. Schilling
    Journal of Theoretical Probability, 2012, 25 : 144 - 170
  • [36] Transition Density Estimates for a Class of L,vy and L,vy-Type Processes
    Knopova, Viktorya
    Schilling, Rene L.
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (01) : 144 - 170
  • [37] The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields
    Abry, Patrice
    Clausel, Marianne
    Jaffard, Stephane
    Roux, Stephane G.
    Vedel, Beatrice
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (01) : 313 - 348
  • [38] Extreme value theory for spatial random fields – with application to a Lévy-driven field
    Mads Stehr
    Anders Rønn-Nielsen
    Extremes, 2021, 24 : 753 - 795
  • [39] Modified Lévy Laplacians
    F. Gomez
    O. G. Smolyanov
    Russian Journal of Mathematical Physics, 2008, 15 : 45 - 50
  • [40] Generalized fractional Lévy random fields on Gel’fand triple: A white noise approach
    Xuebin Lü
    Zhiyuan Huang
    Wanyang Dai
    Frontiers of Mathematics in China, 2011, 6 : 493 - 506